

10° Automotive SPIN Italy Workshop Milan (Italy), October 25 2012

MASP (Metrics in Automotive Software Projects)

Purpose, Scope & Results

Luigi Buglione, Ph.D. Process Improvement & Measurement Specialist Industry Business Unit

Engineering.IT luigi.buglione@eng.it

www.eng.it

- ✓G1. Introduce the 'metrication' issue ir Automotive projects
- ✓ **G2.** Present the **MASP** project
- ✓ G3. Show the work products and next steps

Agenda

Introduction

- A needed premise
- What happened...

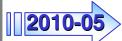
The MASP Project

- State-of-the-art: 5W's
- Work product(s)
- Metric Cards
- BMP matrix
- Conclusions & Prospects
- Q&A

You cannot control what you cannot measure but...

You cannot measure what you cannot define but...

You cannot define what you don't know...


Introduction

What happened...

2011-02

Introduction

A-SPICE: possible appraisal profiles

Management Process Group (MAN) MAN.1 Organizational alignment MAN.2 Organization management A MAN.3 Project management MAN.4 Quality management A MAN.5 Risk management A MAN.6 Measurement A MAN.6 Measurement A CQ.1 Acquisition preparation ACQ.2 Supplier selection A ACQ.3 Contract agreement A ACQ.4 Supplier monitoring

Engineering Process Group (ENG)

- A ENG.1 Requirements elicitation
- A ENG.2 System requirements analysis
- A ENG.3 System architectural design
- A ENG.4 Software requirements analysis
- A ENG.5 Software design
- A ENG.6 Software construction
- A ENG.7 Software integration
- A ENG.8 Software testing
- A ENG.9 System integration
- A ENG.10 System testing
 - ENG.11 Software installation
 - ENG.12 Software and system maintenance

Supporting Process Group (SUP)

- A SUP.1 Quality assurance
- A SUP.2 Verification
- SUP.3 Validation A SUP.4 Joint review
 - SUP.5 Audit
 - SUP.6 Product evaluation
- A SUP.7 Documentation
- A SUP.8 Configuration management
- A SUP.9 Problem resolution management
- A SUP.10 Change request management

- ACQ.5 Customer acceptance
- A ACQ.11 Technical requirements
- A ACQ.12 Legal and administrative requirements
- A ACQ.13 Project requirements
- A ACQ.14 Request for proposals
- A ACQ.15 Supplier qualification

Resource & Infrastructure Process Group (RIN

- RIN.1 Human resource management
- RIN.2 Training
- RIN.3 Knowledge management
- RIN.4 Infrastructure

Operation Process Group (OPE)

- OPE.1 Operational use
- OPE.2 Customer support

Supply Process Group (SPL)

- A SPL.1 Supplier tendering
- A SPL.2 Product release
- SPL.3 Product acceptance support

Process Improvement Process Group

- PIM.1 Process establishment
- PIM.2 Process assessment
- A PIM.3 Process improvement

Reuse Process Group (REU)

- REU.1 Asset management
- A REU.2 Reuse program management
- REU.3 Domain engineering

A Automotive-SPICE

not included in ISO/EC 15504

HIS (VW, Audi, BMW, Porsche, D&C)

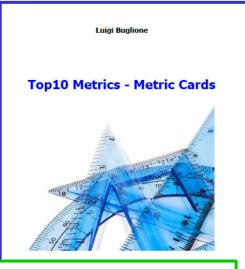
FIAT

FORD

Purpose (Why)

The 'Metrication' issue

- ✓ Started a discussion within the Automotive SPICE Assessors & Improvers Working Group (ASAI) in mid-2009
- ✓ Nowadays MAN.6 process is not included in typical A-SPICE appraisals, loosing a plenty of information about project monitoring that MAN.3 cannot assure and provide



✓ www.semq.eu/pdf/top10-metrics.pdf

• What about Automotive?

- ✓ Need to be more domain-focused
- ✓ Expression of interest for a new WG

Measure Name	SDR – Software Defect Rate	ISO/IEC 15	5504	MAN.3
				MAN.4
Purpose	To measure the quality of software product/i product size unit.	tem in terms o	of number	r of defects against it
Entity	Product	Attribute	Defectal	bility
SLC phase where applied	Release phase			
Unit of Measure(s)	Defect			
	Note 1: there are several ways and criteria for c typology, by origin, etc. Note 2: "a problem which, if not corrected, coul- incorrect results" (ISO/IEC 20926:2003 Software e- measurement method — Counting practices manual	d cause an appli ngineering IFF	ication to	either fail or to produce
Measurement Scale	typology, by origin, etc. Note 2: "a problem which, if not corrected, coulincorrect results" (ISO/IEC 20926:2003 Software e	d cause an appli ngineering IFF	ication to	either fail or to produce
Measurement Scale Counting rule	typology, by origin, etc. Note 2: "a problem which, if not corrected, coul incorrect results" (ISO/IEC 20926:2003 Software e measurement method Counting practices manual)	d cause an appli ngineering IFF	ed or disc	either fail or to produce inadjusted functional size

Expression of Interest

- ✓ Kick-off meeting: April 2011
- ✓ 26 people expressed their interest in participating to MASP
- ✓ 11 people actively working on Metrics Cards

The (final) Working Group (WG) participants

- ✓ Luigi **Buglione** (Engineering.IT *coordinator*)
- ✓ Concetta Argiri (TXT Group)
- ✓ Roberto **Bagnara** (Univ. Parma/BUGSENG Srl)
- ✓ Marina Borghi
- ✓ Domenico **Di Leo** (Univ. Napoli Federico II)
- ✓ Lorenzo Falai (Resiltech)
- ✓ Mario Fusani (CNR-ISTI)
- ✓ Giuseppe **Lami** (CNR-ISTI)
- ✓ Leonardo Ricci (Magneti Marelli)
- ✓ Francesco Rossi (Resiltech)
- ✓ Isabella **Ruocco** (Magneti Marelli)

The way we worked (When, Where & How)

2011-04

2011-12

2012-06

Deliverables (What)

Metric Cards for Automotive Software Projects

Technical Report

Version 1.0 - October 2012

MEC - Met	tric Cards		
#	ld [▼	Title	ISO/IEC 15504 ▼
1	CBO	Avg of Coupling Between Objects	SUP.1
2	CC1	McCabe Cyclomatic Complexity	ENG.5, ENG.6
3	CDRE	Company Defect Removal Efficiency	ENG.8, ENG.10
4	CRE	Change Request Effort	MAN.3, SUP.10
5	CTA	Class Type Attributes	SUP.1
6	ENC	Engineering non Conformance	SUP.1
7	EXC	External Calls	SUP.1
8	IFC	Information Flow Complexity	ENG.6
9	OCC	Memory Occupation	ENG.6
10	PSM	Product Software Modification	ENG.6, MAN.3
11	RDR	Rule Deviation Rate	ENG.5, ENG.6
1 2	REI	Reliability Index	MAN.3, MAN.5
13	RES	Requirement Stability	ENG.1, ENG.4
14	SDR	Software Robustness Distribution	ENG.5, ENG.6
15	SFIN	Structural fan-in	ENG.5, ENG.6
1 6	SFOUT	Structural fan-out	ENG.5, ENG
17	WPU	Work Product Usage	PA2.2, PA3.2, PA

Deliverables (What) – Metric Cards

Measure Name	OCC - Memory occupation	ISO/IEC 15504	ENG.6
Purpose	To track project progress by ROM and resources consumption and monitor consum		rder to document
Entity	Resource	Attribute	Maintainability
SLC phase where applied	Implementation		
Unit of Measure(s)	Kbyte		
Measurement Scale	Ratio		
Counting rule	To calculate the ratio between the men available (ROM, RAM)	nory occupied and the	overall memory
Formula	ⁿ		<u>Legend</u> :

Responsib

3.2 CC1 - McCabe Cyclomatic Complexity

Measure Name	CC1 – McCabe Cyclomatic	ISO/IEC 15	504	ENG.5, ENG.6
	Complexity			
Purpose	To increase the maintainability of the source code			
Entity	Product	Attribute	Mainta	inability
SLC phase where	Coding			
applied				
Unit of Measure(s)	Edges; Nodes			
Measurement Scale	Interval			
Counting rule	Count of the number of linearly independent paths through the source code			
Formula	CCI = E - N + 2P			

Deliverables (What) – BMP matrix

Entity Attribute

Project

M.05

Resources

Process

M.02

M.05

M.05

M.06

Attribute₁

Attribute₂

•

The real issue is **not** to reduce the cost of the measurement **process**, **but** optimising it against the informative value provided by the number of

measures/indicators balancing them by each perspective of analysis.

The Metric Cards

Conclusions & Perspectives

The Value of Measurement

- ✓ Measurement is not a primary, but a support process in most known SPI models (e.g. CMMI, ISO/IEC 15504, etc.). It's not part of Project Management process but a process aside (e.g. MA in CMMI; MAN.6 in ISO/IEC 15504-2, etc.)
- ✓ Measurement must be not a cost, but an investment; measure its ROI in projects, moving from the savings from better estimates during the short-mid term

Some basic criteria...

- ✓ GQM (Goal-Question-Metric) or some of its variants (GQ(I)M, V-GQM...) represents a starting point for determining measures
- ✓ The '5Ws+H' rule from journalism is a common-sense series of criteria for setting up a measurement program: part of such information (what, why, who, when, where, how) should be part of the 'metric cards' in order to consistently adopt measures across different teams and organization(s)

The Metrics Cards

- ✓ Each 'metric card' should contain a series of not ambiguous information about the '5Ws+H'
- ✓ Link each measure to 1+ processes, trying to prioritize those ones than can be used jointly in a supply chain logic (more informative value at the same operative cost)
- ✓ The selection of a balanced set of measures across multiple viewpoints and measurable entities can help in having a more affordable and real picture of the organization
- ✓ Measure few, measure well: the BMP technique can help in this!

The MASP project → a new TR available

- ✓ A new Automotive SPIN Italy working group [Apr-2011; Oct 2012]
- ✓ Technical Report (TR) ready available for download from the AutomotiveSPIN Italy web
- ✓ On-going effort: (1) fix any possible error in current cards/document; (2) add few new cards; (3) evaluate any possible suggestion/comment received

Thanks for your attention! Grazie per la vostra attenzione!

