

# How to model faults on SW architectural level: an approach to ISO26262 SW safety analysis

Automotive SPIN Italia 11° Automotive Software Workshop 07/11/2012 Milan, Italy





#### Techniques and Technologies for Resilience

RESILTECH

- Company
  - SRL born in late 2007
  - Founded by
    - university researchers expert in resilient computing and
    - specialists in the industrial field of Verification and Validation (V&V) of critical systems
- Mission

«To provide engineering consulting and design services to companies and public bodies mainly for, but not limited to, the field of resilient systems and infrastructures»

- Research
  - Strong relations with both universities and research institutes
  - Activities on FP7 projects
  - Artemis





DELL'INFORMAZIONE "A. FAEDO" ISTI-CNR (Pisa-italy)



Università degli Studi di Firenze (Florence-Italy)

- Automotive Working groups
  - ISO SC3/WG16 for ISO26262 ("Road vehicles Functional safety")
  - AUTOSAR Phase III
    - WP 1.3 Safety



- Automotive Certification
  - Partnership with TUV-SGS for functional safety certifications







# SW Safety Analysis: ISO26262 - WG16 activities

- London meeting (June 2013)
  - Big discussion on common understanding of concept of Safety Analysis at SW level,
  - particularly on the concepts of SW faults and differences between SW and HW approaches, for instance related to FMEA-like methods of analysis.
  - Outcomes of the meeting were
    - different understandings are present,
    - It is important to provide some kind of clear guidance on application
- and next steps
  - Official SW sub group to be created under guidance of Part 6 responsible (UK).
  - Possibilities for guidelines to be included in first revision of ISO26262 or PAS document to be created.



## SW "faults" issue 1/3

- To run safety analysis we often starts from the concept of fault.
- We basically need to understand/model what could be wrong before "fixing" it.
- In relation to SW Safety Analysis, then, the concept of SW "faults" is a key one.
- For instance this is relevant to judge the efficiency of a safety mechanism.
  - "Safety mechanisms can be specified to cover both issues associated with random hardware failures as well as **software faults**" *ISO26262:2011-Part6*.
- Anyway sharing the understanding of what a SW fault represents could be a challenging task.



### SW "faults" issue 2/3


- SW faults can be linked to many aspects but mainly related to
  - Incorrent/missing requirements
  - Incorrect implementation
- In order to "validate" the SW architecture it is key to study how these faults
  - originate
  - propagate
  - affect the behavior of the SW and eventually impact the Safety Requirement
- Main practical issue is then how to "instantiate" the single fault.



# SW "faults" issue 3/3

- In line with the standard requirements and then focusing on
  - the architectural level
  - and the design phase
- a possible solution is
  - to focus more on the fault "effect"
  - and then to adopt a fault model.
  - Follow this reasoning a proper level of granularity is a SW component within a more complex SW architecture.
  - Then the fault models are "applied" to the SW component.



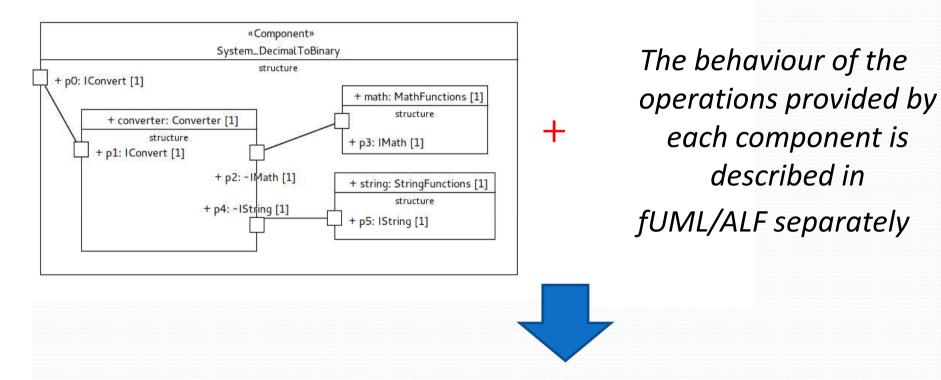


# How to model – Which technology 1/2

- The analysis can be run on a model of the SW architecture because
  - it is necessary to drive the architectural definition and "validation" of specified safety mechanisms and as such
  - it has to be applied on an (early) design stage
- But can a model express enough information to support this study?
- Or rather which model can be suitable?
- In this context somehow modeling behavior in addition to the SW structure is essential.
- Also having an executable model would allow to adopt a toolsupported analysis that is important to analyze complex systems.

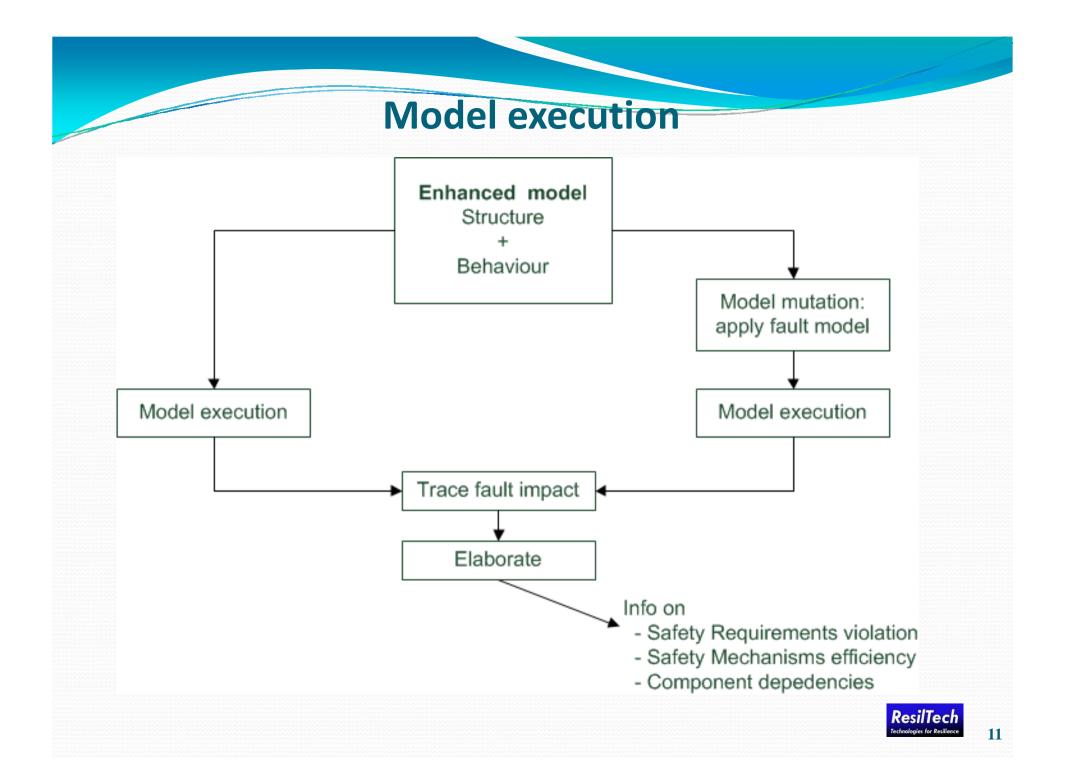


# How to model – Which technology 2/2


- Foundational UML (fUML) is an executable subset of standard UML that can be used to define, in an operational style, the structural and behavioral semantics of systems.
- Anyway graphical modeling notations are not good for detailed programming.
  - The Action Language for fUML (Alf) standard specifies a textual action language with fUML semantics.

| UML package           | Included in fUML? |
|-----------------------|-------------------|
| Modeling of structure | 9                 |
| Classes               | yes               |
| Components            | no                |
| Composite Structures  | no                |
| Deployments           | no                |
| Modeling of behavior  |                   |
| Actions               | yes               |
| Activities            | yes               |
| Common Behaviors      | yes               |
| Interactions          | no                |
| State Machines        | no                |
| Use Cases             | no                |
|                       |                   |

Structural views are essential, then it is key to bridge the gap related to the missing views.




# **Model transformation**



An fUML/ALF executable model of the whole SW architecture





#### Conclusions

- Main benefits
  - A clear procedure to perform the analysis is present
  - Results are reproducible
  - It is "easy" to compare different architectural solutions
  - It is possible to integrate within the SW development flow
- Main drawback
  - Effort in the model definition is necessary
    - More details are defined more the accuracy of the analysis benefits





# Thanks for your attention!

francesco.rossi@resiltech.com

