



Speaker: Luigi Nuzzi – IoT Software Development Unit



# **General Information**



Coordinator: Prof. Andrea Acquaviva (Polytechnic of Turin)

Partners:

- POLITECNICO DI TORINO Italy
- UNIVERSITA DEGLI STUDI DI VERONA Italy
- ATEGO United Kingdom & France
- CEA France (Commissariat à l'énergie atomique et aux énergies alternatives)
- CSEM Switzerland (Centre Suisse d'Electronique et de Microtechnique)
- AKHELA SRL Italy (AKH)
- UNIVERSITY OF YORK United Kingdom (UY)
- Type of project: FP7 Collaborative Projects
- Budget Total: 3970 K€





# WP Organization





# **Project Themes**

- More Functionalities
- Cost Saving
- Time To Market
- Energy Saving
- More Speed
- Faster Prototyping
- Focus on Application rather then on Infrastructure





<sup>-</sup>rom TOUCHMORE Website

### **Project Motivations**

Recent trends in **embedded system** architectures brought a rapid **shift** towards **multicore**, **heterogeneous** and **reconfigurable platforms**.

This makes chip design enormously complex and imposes a large effort for the programmers to develop their applications. For this reason, new and more efficient tools for software development are needed to ensure software productivity and time to market of new applications.

The **automation of the software design** process starting from high level models all-the-way down to a customized and implementation on specific architectures **is a key factor to increase programmer productivity**.





#### ToucHMore Concept





# Why Multicores for Energy & Speed?







# Why Automotive for Explotation?



http://www.wjjeeps.com/ecm\_02.jpg



The Automotive Industry need to reduce #of ECU to: Save Costs Reduce Power Consumption Reduce EMC problems Reduce Wiring...

...While integrating more Features, which means: More Speed and computational power.





#### Car Infotaiment Evolution





#### Tool Flow – Overview





#### Artisan Application Model

👃 Akhela Review, Version 0 - Artisan Studio - [Applications::Infotainment - Tegra::Infotainment.State Machine.Entertainment] - 0 X <u>File Edit View Tools Diagram Window Help</u> \_ @ × : D 🚅 🐰 🖻 🖻 🗸 🗙 🖃 🖨 🐧 🚰 🔂 🚰 🖏 🖓 sale • 당 암 왕 - Q Q ⊠ 📴 💡 🕟 🖻 🖻 --- 🗆 ♀ ⊖ ⊖ ⊖ ● ● ≪ ○ ◎ ‡ 😤 🗷 ⊜ ୠ 경 → 🍤 L + 🛝 🕖 :におおおおお ()~(王) == □ ● (\*= ) 69% : 🗈 🖻 📥 🕨 🥙 🔳 📴 Kata Parce Force | 🔗 🔒 📼 🛝 🥒 Not Connected Relationships **-** ₽ × 🚖 Entertainment 🗙 **→** × Diject Interaction Model StateMachine Â 🖅 🧰 Data Model Entertainment Activity Model State Model •--> 5 State Machines 🗄 🖽 🕄 State Machine Idle Dependents 🗼 🦲 Depends On Applied Comments Applied Constraints Entertainment 🗄 🧰 Dependents Bass Decoder MP3 Volum 🚡 🧰 Depends On 🛓 🧰 Applied Comments Entertainment 🖶 🔘 Final Fader Balance Sin Playe initial 🗄 📾 State Machine 🧶 🚍 🍓 👶 🛃 🏝 🔲 🕢 🛐 📩 Relationships < III ? ▼ ₽ X Properties of 'Entertainment' Output General Text State Type Options Changes Style Items Entertainment Full name: Applications::Infotainment - Tegra::Infotainment.State Machine::Entertainment Sequential State 4 Type: 🛅 🕅 🕅 🤸 🛨 🔯 Output Last changed on/by: 31/10/2013 12:40:15 ATEGO\Alarkham NUM For Help, press F1 POLITECNICO RTS York --- CEO **DI TORINO** CSEM centre suisse d'électroniq et de microtechnique akhela atego



#### The GENEPY Platform







#### Software Platform











#### The RTL2C++ Proposal





#### Results

|     | C++ IP | Manual code |          |           |         | H2C++ code |          |           |           |           |           |
|-----|--------|-------------|----------|-----------|---------|------------|----------|-----------|-----------|-----------|-----------|
|     |        | C++         | Assembly | main_IP() | Sim.    | C++ loc    | Assembly | Main_IP() | C++       | Sim. Time | Sim. Time |
|     |        | loc         | loc      | invoc.    | time(s) |            | loc      | invoc.    | scheduler | w.out     | with      |
|     |        |             |          |           |         |            |          |           | invoc.(s) | abstract  | abstract  |
|     |        |             |          |           |         |            |          |           |           | types(s)  | types(s)  |
| Ι   | ROOT   | 18          | 79       | 100,000   | 0.26    | 223        | 985      | 100,000   | 7,200,004 | 0.92      | 0.37      |
|     | GCD    | 25          | 45       | 100,000   | 1.58    | 114        | 186      | 100,001   | 700,101   | 10.38     | 1.77      |
|     | ECC    | 224         | 1,538    | 100,000   | 0.31    | 390        | 1,724    | 200,001   | 200,259   | 0.65      | 0.34      |
| II  | ADPCM  | 271         | 318      | 100,000   | 3.96    | 284        | 749      | 738,000   | 738,000   | 58.81     | 4.30      |
|     | FFT    | 876         | 2,731    | 100,000   | 0.41    | 3,643      | 8,858    | 210,000   | 2,731,000 | 1.83      | 1.28      |
|     | DSPI   | 353         | 721      | 100,000   | 2.13    | 2,891      | 3,112    | 200,000   | 1,605,020 | 9.12      | 3.87      |
| III | DIST   | 37          | 203      | 100,000   | 1.46    | 116        | 247      | 100,065   | 800,520   | 13.13     | 1.70      |
|     | DIV    | 22          | 34       | 100,000   | 1.45    | 67         | 74       | 200,001   | 1,000,001 | 12.72     | 1.55      |
|     | CRC    | 235         | 714      | 100,000   | 3.49    | 1,621      | 5,275    | 1,520,000 | 100,000   | 13.52     | 5.36      |

• ROOT: Square root device (VHDL).

• GCD: Greatest common divisor (VHDL).

• ECC: Error Correction Code (VHDL).

• ADPCM: Adaptive Differential Pulse Code Modulation (SystemC).

- FFT: Fast Fourier Transform (VHDL).
- DSPI: Synchronous Peripheral Interface (Verilog).
- DIST: Pixel Distance Encoder (VHDL).
- DIV: Filter for RGBA representation of pixels (VHDL).
- CRC: Cyclic-Redundancy Checking (VHDL).

I = complete C++ implementation available

II = Partial equivalent C++ implementation.

III = Manually implemented from scratch (DIST, DIV, CRC).

#### NOTE:

The synthesis of the C++ code has been instantaneously accomplished by H2C++, while 28 person-days have been spent for implementing and verifying the equivalent C++ code by hand.





# Infotainment Target Components





# Main Outcome and Result



- A complete automatic customizable tool-chain for multicore platform will be developed and evaluated on a complex heterogeneous next generation multicore chip designed by CEA and CSEM including clusters of general purpose processors as well as DSPs.
- The evaluation is obtained using automotive infotainment applications provided by AKHELA. Target application
- The generated code will be optimized for the selected platform considering energy-efficiency and robustness with respect to process variabilities.





- Consistent (20%) reduction of time to market and cost for the design of complex multicore systems
- Reduction in the cost of the system design by 15% through automation and customization of code generation
- Achievement of energy efficiency and robustness in next generation multicore platforms





