
Android	
 is	
 a	
 trademark	
 of	
 Google	
 Inc.	
 Use	
 of	
 this	
 trademark	
 is	
 subject	
 to	
 Google	
 Permissions.	

Linux	
 is	
 the	
 registered	
 trademark	
 of	
 Linus	
 Torvalds	
 in	
 the	
 U.S.	
 and	
 other	
 countries.	

Qt	
 is	
 a	
 registered	
 trade	
 mark	
 of	
 Digia	
 Plc	
 and/or	
 its	
 subsidiaries.	
 All	
 other	
 trademarks	
 menConed	
 in	
 this	
 document	
 are	
 trademarks	
 of	
 their	
 respecCve	
 owners.	

Romuald NOZAHIC
European Application Engineer

Multicore platform towards
automotive safety challenges

mentor.com/automotive

2

Agenda

Multicore Consolidation
n  Market Trends
n  Different way to take advantages
n  Complexity overview

Safety
n  3 solutions

3

Multicore is not new concept

4

Multicore is not new concept

5

Consolidation on the SoC level

i.MX 6SoloX

6

Consolidation on a system level

ECU ADAS IVI DRIVER INFO

7

Multicore Configurations

Homogeneous uAMP

Linux
(SMP)

Cortex A Cortex A

8

Multicore Configurations

Homogeneous uAMP

RTOS

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

9

Multicore Configurations

Homogeneous uAMP

RTOS
(master) RTOS

Cortex A Cortex A

Linux

Cortex A Cortex A

Linux
(master)

RTOS
(SMP)

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

10

Multicore Configurations

Homogeneous uAMP

RTOS
(master) RTOS

Cortex A Cortex A

Linux

Cortex A Cortex A

Linux
(master)

RTOS

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

11

Multicore Configurations

Linux
(master)

RTOS

Cortex A Cortex A

Linux RTOS
(master)

Cortex A Cortex A

Linux
(master)

Bare
Metal
Env.

Cortex A Cortex A

Bare
Metal
Env.

RTOS
(master)

Cortex A Cortex A

Heterogeneous uAMP Homogeneous uAMP

RTOS
(master) RTOS

Cortex A Cortex A

Linux

Cortex A Cortex A

Linux
(master)

RTOS

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

12

Multicore Configurations

Linux
(master)

RTOS

Cortex A Cortex A

Linux RTOS
(master)

Cortex A Cortex A

Linux
(master)

Bare
Metal
Env.

Cortex A Cortex A

Bare
Metal
Env.

RTOS
(master)

Cortex A Cortex A

Heterogeneous uAMP Homogeneous uAMP

RTOS
(master) RTOS

Cortex A Cortex A

Linux

Cortex A Cortex A

Linux
(master)

RTOS

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

13

Multicore Configurations

Linux
(master)

RTOS

Cortex A Cortex A

Linux RTOS
(master)

Cortex A Cortex A

Linux
(master)

Bare
Metal
Env.

Cortex A Cortex A

Bare
Metal
Env.

RTOS
(master)

Cortex A Cortex A

Homogeneous uAMP

RTOS
(master) RTOS

Cortex A Cortex A

Linux

Cortex A Cortex A

Linux
(master)

Hypervisor Hypervisor

Hypervisor Hypervisor

Hypervisor

Hypervisor

RTOS

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

Heterogeneous sAMP

14

Multicore Configurations

Linux
(master)

RTOS

Cortex A Cortex A

Linux RTOS
(master)

Cortex A Cortex A

Linux
(master)

Bare
Metal
Env.

Cortex A Cortex A

Bare
Metal
Env.

RTOS
(master)

Cortex A Cortex A

Homogeneous uAMP

RTOS
(master) RTOS

Cortex A Cortex A

Linux

Cortex A Cortex A

Linux
(master)

Hypervisor Hypervisor

Hypervisor Hypervisor

Hypervisor

Hypervisor

RTOS

Cortex A Cortex A

Linux
(SMP)

Cortex A Cortex A

Heterogeneous sAMP

15

Multicore Configurations: Heterogeneous

Linux or
RTOS

(master)

Linux or
RTOS or

BME

Cortex A Cortex A

Hypervisor

14 use cases

Cortex M Cortex M

RTOS or
BME

RTOS or
BME

* N use cases * M use cases

Soft Core

RTOS
or BME

16

Extreme complexity is introduced with general purpose
development

n  System architecture

n  Configuration

n  Booting

n  Debugging

n  Separation

n  Device sharing

n  Inter-processor communication

n  Security

Complexity Skyrockets

17

è   Configuring and deploying multiple operating systems
and applications across heterogeneous processors

è   Booting multiple operating systems efficiently and in a
coordinated manner across heterogeneous processor cores

è   Communicating between isolated sub-systems on a multicore
processor or between heterogeneous processors

è   Visualizing interactions between heterogeneous operating
systems on heterogeneous multicore for debugging and
optimization

è   Proprietary functionality that allows interoperability of
open source and proprietary environments with all the above
capabilities

Comprehensive solution for heterogeneous multicore
development that enables:

Multicore Framework

18

è   Configuring and deploying multiple operating systems
and applications across heterogeneous processors

è   Booting multiple operating systems efficiently and in a
coordinated manner across heterogeneous processor cores

è   Communicating between isolated sub-systems on a multicore
processor or between heterogeneous processors

è   Visualizing interactions between heterogeneous operating
systems on heterogeneous multicore for debugging and
optimization

è   Proprietary functionality that allows interoperability of
open source and proprietary environments with all the above
capabilities

Comprehensive solution for heterogeneous multicore
development that enables:

Multicore Framework

19

Security and Safety via Separation

Safety: Protecting the world
from the device

Security: Protecting the
device from the world

Mixed criticality: Protecting of
security or safety critical parts of the
device from other parts of the device

ISO26262-6 requires “freedom from interference”. If two systems can interfere
with each other, they must be certified to the highest ASIL level of the two.
Secure separation aims to eliminate such interference.

20

Use Case 1:

Physical Separation aka AMP

21

Multicore Device running one Operating System
—   Migrating to multicore device for the next generation or project
—   Need to consolidate applications that require real time and determinism

with applications requiring Linux networking or graphics services
—   Addressing performance constrains of existing design

A9

Graphics or Web

Linux

A9

Real Time App

What the system looks like today

22

Multicore Device running multiple Operating Systems
—   Single user interface for Configure, Edit, Debug, Optimize work
—   Framework to configure, boot, execute and communicate across cores

and Operating Systems
—   Take full advantage of the underlying ‘silicony goodness’ J

A9

Graphics or Web

Linux RTOS

A9 or M4

Real Time App

What the system will look like

23

Core Lifecycle
Management

Freescale
i.MX 6SoloX

IPC

ARM®

Cortex®-A9
ARM®

Cortex®-M4

Mentor® Embedded Multicore
Framework

remoteproc
rpmsg
virtio

Sourcery™ CodeBench IDE

Patient Sensor Data Acquisition
Application

Remote Firmware

rpmsg
virtio

Nucleus® RTOS Mentor® Embedded Linux®

User Applications

Qt® HMI Webserver

Patient
Name: Jan
Facility: Clinic

Floor 5 Room 304

How this could be accomplished

24

Use Case 2:

Separation using Software
Enforcement

25

Multiple boards running various Operating Systems and dedicated
applications

—   Migrating to multicore device for the next generation or project

—   Need to consolidate applications that require real time with Linux
—   Must share displays and other resources

SoC

Cluster App

OS

SoC

Infotainment App

OS

SoC

ECU App

Autosar

What the system looks like today

26

Consolidation to a single Heterogeneous Multicore SoC running multiple
Operating Systems and Applications

—   Virtualizing GPU to either control multiple displays per application or layer
multiple applications on a single display (1:1, 1:N, N:1)

—   Framework to configure, boot, execute and communicate across domains
in safe and reliable matter

A15

Cluster App

RTOS Linux

A15

Infotainment App

Autosar

M4

ECU App

Hypervisor

What the system will look like

27

IVI Linux AUTOSAR
& CAN
stack
on M4

Hypervisor (2xA15)
+ GPU sharing

BusMaster CAN
Vehicle

Simulator

Cluster Display

CAN
BUS

AXSB J6

Nucleus

Infotainment Display

USB
2CAN

FPD-Link Display
12” (1280x480)

FPD-Link Touch Display
10” (1280x800)

How this could be accomplished

28

Use Case 3:

Separation using Hardware
enforcement

29

A9

App 1

RTOS

What the system looks like today

App 2

A9

RTOS

App 2

A9

App 1

RTOS

One or more cores running applications of various security or robustness
levels

—   Migrating to multicore or more powerful device for the next project

—   Need to consolidate applications that require secure and non secure apps

30

A9

Secure
App

RTOS

What the system will look like

nonSecure
App

A9

Linux

nonSecure App

A9

Secure App

RTOS

One or more cores running applications of various security or robustness
levels

—   Migrating to multicore or more powerful device for the next project

—   Need to consolidate applications that require secure and non secure apps

31

Nucleus
RTOS

A9 A9

nonSecure App

Nucleus RTOS

or Linux

Secure App

Hardware Separation

Nucleus
 RTOS

A9

nonSecure App

Nucleus RTOS
or Linux

Secure App

Hardware Separation

Control

Data

How this could be accomplished

Using the Hardware Separation features of ARM architecture to isolate
secure or robust applications from the rest of the system

—   Control only flows from Secure World to Normal World

—   Data could flow either way

Control

Data

32

How this could be accomplished: Example

Complex	
 Graphics	
 Render	

Non-certified

Complex	
 Instrument	
 Logic	

Safe	
 Graphics	
 Render	

Certified

Safe	
 Instrument	
 Logic	

Safe	
 Graphics	
 Driver	

planes blended in
hardware, also managed

by safe driver

draws content
to separate graphics plane

managed by safe driver

Single Core

Dual Core

33

Multi-OS Android ● AUTOSAR ● Bare metal ● Linux ● Nucleus RTOS

Secure
Multicore

Framework
Type 1 Hypervisor ● AMP ● SMP ● TrustZone Enabled

Safety
Certs* ISO 26262 ● DO-178 ● IEC-61508 ● IEC-62304

Tooling Sourcery CodeBench ● Analyzer ● AUTOSAR
Virtual Prototyping ● Requirements Tracing

* Note: Safety Certifications are an ongoing process.

Reference
Platforms

SOP Ready ● Automotive Design Rules ● Flexible

FastBoot ● Services

Mentor Embedded
Safe ¬ Secure ¬ Multi-OS ¬ Heterogeneous Multicore Platforms

34

Summary
n  Analyze your specific requirements to determine which

use case outlined in this session makes sense for your
device

n  Mentor has technologies and expertise to help you
address automotive consolidation use cases

