
The MISRA C Coding Standard:
A Key Enabler for the Development of Safety-

and Security-Critical Embedded Software

Roberto Bagnara, Abramo Bagnara, Patricia M. Hill

http://bugseng.com

& Applied Formal Methods Laboratory

Department of Mathematical, Physical and Computer Sciences

University of Parma, Italy

16th Automotive Software Workshop, CRF, Orbassano (TO),
Italy, February 21st, 2019

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

http://bugseng.com

Outline I

1 The C Language
Non-Definite Behavior
Why Is C Not Fully Defined?

2 MISRA C
Historical Background
Introduction to MISRA C:2012

3 Understanding MISRA C
MISRA C is Part of a Process
MISRA C: Error Prevention, Not Bug Finding

4 Successful Adoption of MISRA C
The Importance of Tools
The Importance of Training

5 Conclusion

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Disclaimer

I am a member of the MISRA C Working Group and of ISO/IEC
JTC1/SC22/WG14, a.k.a. the C Standardization Working Group

however

the views expressed in this presentation and the accompanying
paper are mine and my coauthors’ and should not be taken to
represent the views of either working group

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language

Advantages of C

C compilers exist for almost any processor

C compiled code is very efficient and without hidden costs

C allows writing compact code (many built-in operators,
limited verbosity, . . .)

C is defined by an ISO standard

C, possibly with extensions, allows easy access to the hardware

C has a long history of usage in critical systems

C is widely supported by tools

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language

Disadvantages of C

ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization
Working Group, has always been faithful to the original spirit of
the language

I Trust the programmer

II Let the programmer do anything

III Keep it fast, even if not portable

Bad for safety and security!

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language

What is “Behavior”

ISO/IEC 9899:1999 TC3 (N2156) 3.4

behavior

external appearance or action

As-if rule

The compiler is allowed to do any transformation that ensures that
the “observable behavior” of the program is the one described by
the standard

True in C, but also in C++, Rust, Go, OCaml, . . .

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

What is “Undefined Behavior”

ISO/IEC 9899:1999 TC3 (N2156) 3.4.3

undefined behavior

behavior, upon use of a non-portable or erroneous program
construct or of erroneous data, for which this International
Standard imposes no requirements

No requirements means absolutely no requirements: crashing,
erratic behavior of any kind, formatting the hard disk!

Normally it means the compiler assumes undefined behavior does
not happen

If it does happen, the programmer has violated the contract:
warranty void!

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

Undefined Behavior: Examples

The program attempts to modify a string literal (6.4.5)

The string set up by the getenv or strerror function is
modified by the program (7.20.4.5, 7.21.6.2)

#include <stdio.h>

#include <stdlib .h>

int main () {

char *path = getenv ("PATH");

path [0] = ’\0’; /* Disable path search . */

/* How does the program behave ? */

}

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

Undefined Behavior: Examples (cont’d)

The value of an object with automatic storage duration is
used while it is indeterminate (6.2.4, 6.7.8, 6.8)

A trap representation is read by an lvalue expression that does
not have character type (6.2.6.1)

int main () {

int a;

if (a > 0) /* Undefined behavior . Bit -trap? Maybe. */

return 1;

else

return 0;

}

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

What is “Unspecified Behavior”

ISO/IEC 9899:1999 TC3 (N2156) 3.4.4

unspecified behavior

use of an unspecified value, or other behavior where this
International Standard provides two or more possibilities and
imposes no further requirements on which is chosen in any instance

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

Unspecified Behavior: Example

The order in which the operands of an assignment operator
are evaluated (6.5.16)

int *f(int **pp) {

++(*pp);

return *pp;

}

int main () {

int a[] = { 0, 1, 2, 3 };

int b[] = { 10, 11, 12, 13 };

int *p = a;

int *q = b;

*(f(&p)) = q[*p];

}

/* Contents of a: 0, 10, 2, 3 or

0, 11, 2, 3 ? */

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

What is “Implementation-Defined Behavior”

ISO/IEC 9899:1999 TC3 (N2156) 3.4.1

implementation-defined behavior

unspecified behavior where each implementation documents how
the choice is made

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Non-Definite Behavior

Implementation-Defined Behavior: Example

Which of signed char or unsigned char has the same range,
representation, and behavior as “plain” char (6.2.5, 6.3.1.1)

#include <limits .h>

#include <stdio.h>

int main () {

if (CHAR_MIN == 0)

fputs ("unsigned char\n", stdout);

else

fputs ("signed char\n", stdout);

/* What is the output ? */

/* Compliant C implementations document this behavior . */

}

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Why Is C Not Fully Defined?

Why?

We described:

Undefined behavior

Unspecified behavior

Implementation-defined behavior

(and we glossed over locale-specific behavior)

Why is the standardized language not fully defined?

Because implementing compilers is easier

Because compilers can generate faster code

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Why Is C Not Fully Defined?

UB: Signed Integer Overflow

The behavior is undefined when:

An exceptional condition occurs during the evaluation of
an expression (6.5)

int always_true (int v) {

return (v + 1 > v) ? 1 : -1;

}

Can be compiled as

int always_true (int v) {

return 1;

}

because the compiler assumes v + 1 does not overflow

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Why Is C Not Fully Defined?

UB: Modifying String Literals

The behavior is undefined when:

The program attempts to modify a string literal (6.4.5)

Example: in a program there are literals "Tail" and "HeadTail"

The compiled program can store in memory only "HeadTail" and
return the pointer to the fifth character as "Tail"

Changing one string may also change the other, but the compiler
can assume this will never happen

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Why Is C Not Fully Defined?

UB: Shifting Too Much

The behavior is undefined when:

An expression is shifted by a negative number or by an
amount greater than or equal to the width of the promoted
expression (6.5.7)

uint32_t i = 1;

i = i << 32; /* Undefined behavior . */

Strange: if I push 32 or more zeros from the right the result should
be zero, right?

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

The C Language Why Is C Not Fully Defined?

UB: Shifting Too Much Example

From Intel64 and IA-32 Architectures Manual, page 1706 section
“IA-32 Architecture Compatibility”:

The 8086 does not mask the shift count. However, all
other IA-32 processors (starting with the Intel 286 pro-
cessor) do mask the shift count to 5 bits, resulting in a
maximum count of 31. This masking is done in all oper-
ating modes (including the virtual-8086 mode) to reduce
the maximum execution time of the instructions.

Basically, this means that in those machines

i = i << 32; /* This is equivalent to... */

i = i << (32 & 0x1F); /* ... this , i.e., ... */

i = i << 0; /* this , which is a no-op. */

C leaves the behavior undefined for speed and ease of
implementation

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Historical Background

The MISRA Project

Started in 1990

Mission: To provide world-leading best practice guidelines for
the safe and secure application of both embedded control
systems and standalone software

The original project was part of the UK Government’s
“SafeIT” programme

Now self-supported

HORIBA MIRA provides the project management support

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Historical Background

Original MISRA Publications

November 1994: Development guidelines for vehicle based software
(The MISRA Guidelines)

The first automotive publication concerning functional safety,
more than 10 years before work started on ISO 26262!

April 1998: Guidelines for the use of the C language in vehicle
based software (MISRA C)

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Historical Background

History of MISRA C/C++ Guidelines
M

IS
R

A
 C

+
+

M
IS

R
A

 C
C

o
m

p
a

n
y

sp

e
ci

fi
c

Rover

MISRA

C++:2008

JSF++ UK MoD

MISRA

C:2004

MISRA

C:2012

MISRA

C:1998

Ford

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Strength and Weakness of C

The weakness of the C language comes from its strength:

Ease of writing efficient compilers for almost any architecture
=⇒ non-definite behavior

Efficient code with no hidden costs =⇒ no run-time error
checking

Many compilers, defined by an ISO standard (must
standardize existing practice, many vendors, backward
compatibility) =⇒ non-definite behavior

Easy access to the hardware =⇒ easy to shoot your own foot

Compact code =⇒ the language can be easily misunderstood
and misused

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Language Subsetting

Several features of C do conflict with both safety and security

For safety-related applications, language subsetting is crucial

Mandated or recommended by all safety- and security-related
industrial standards:

IEC 61508

ISO 26262

CENELEC EN 50128

RTCA DO-178C

The most authoritative language subset for the C programming
language is MISRA C

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines

Rule 5.6 A ty pedef name shall be a unique identiÞ er

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cation

A typedef name shall be unique across all name space s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type deÞ nition is made in a header Þ le and

that header Þ le is included in multiple source Þ les.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

Example

c
tio

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cationÞ

A typedef name shall be unique across all name space typedef s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type detypedef Þ nition is made in a Þ header Þ leÞ and

that header Þ leÞ is included in multiple source Þ les.Þ

Rationale

Reusing a typedef name either as another typedef typedef name or typedef as the name of a function, object or name or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union typedef or enumeration tag name associated with name may be the same as the structure, union

the typedeftypedeftypedef

Example

On the left, a unique identifi er for the guideline
composed by a classifi cation as “Rule” or
“Directive” followed by a dot-decimal
sub-identifi er; the remaining text is called the
headline of the guideline

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)

Rule 5.6 A ty pedef name shall be a unique identiÞ er

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cation

A typedef name shall be unique across all name space s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type deÞ nition is made in a header Þ le and

that header Þ le is included in multiple source Þ les.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

Example

 R
u

le
s

AmpliÞ cationÞ

A typedef name shall be unique across all name space typedef s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type detypedef Þ nition is made in a Þ header Þ leÞ and

that header Þ leÞ is included in multiple source Þ les.Þ

Rationale

Reusing a typedef name either as another typedef typedef name or typedef as the name of a function, object or name or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union typedef or enumeration tag name associated with name may be the same as the structure, union

the typedeftypedeftypedef

Example

S
e

Rule 5.6 A ty pedefty ty name shall be a unique identidef Þ erÞ

One of “Mandatory”, “Required” or “Advisory”

A pair of the form Decidability, Scope:
the former is one of “Decidable” or
“Undecidable”, the latter is one of
“System” or “Single Translation Unit”

One or more of “C90” and “C99” separated by comma

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Scope of Analysis

Rules are classified according to the amount of code that needs to
be analyzed in order to detect all violations

Single Translation Unit: All violations within a project can be
detected by checking each translation unit
independently

System: Identifying violations of a rule within a translation
unit requires checking more than the translation unit
in question, if not all the source code that constitutes
the system

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)

Rule 5.6 A ty pedef name shall be a unique identiÞ er

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cation

A typedef name shall be unique across all name space s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type deÞ nition is made in a header Þ le and

that header Þ le is included in multiple source Þ les.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

Example

Rationale

Reusing a typedef name either as another typedef typedef name or typedef as the name of a function, object or name or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union typedef or enumeration tag name associated with name may be the same as the structure, union

the typedeftypedeftypedef

Example

S
e

Rule 5.6 A ty pedefty ty name shall be a unique identidef Þ erÞ

Category Required

Analysis Decidable, System

Applies to C90, C99

A more precise description of the guideline:
this is normative!

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)

Rule 5.6 A ty pedef name shall be a unique identiÞ er

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cation

A typedef name shall be unique across all name space s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type deÞ nition is made in a header Þ le and

that header Þ le is included in multiple source Þ les.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

Example

Exception

The typedef name may be the same as the structure, union typedef or enumeration tag name associated with name may be the same as the structure, union

the typedeftypedeftypedef

Example

S
e

Rule 5.6 A ty pedefty ty name shall be a unique identidef Þ erÞ

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cationÞ

A typedef name shall be unique across all name space typedef s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type detypedef Þ nition is made in a Þ header Þ leÞ and

that header Þ leÞ is included in multiple source Þ les.ÞThe reason why the guideline exists

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)

Rule 5.6 A ty pedef name shall be a unique identiÞ er

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cation

A typedef name shall be unique across all name space s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type deÞ nition is made in a header Þ le and

that header Þ le is included in multiple source Þ les.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

ExampleExample

S
e

Rule 5.6 A ty pedefty ty name shall be a unique identidef Þ erÞ

Category Required

Analysis Decidable, System

Applies to C90, C99

AmpliÞ cationÞ

A typedef name shall be unique across all name space typedef s and translation units. Multiple declarations of

the same typedef name are only permitted by this rule if the type detypedef Þ nition is made in a Þ header Þ leÞ and

that header Þ leÞ is included in multiple source Þ les.Þ

Rationale

Reusing a typedef name either as another typedef typedef name or typedef as the name of a function, object or name or

enumeration constant, may lead to developer confusion.

A description of the situations in which the
rule does not apply

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)
enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

Example

void func (void)

{

 {

 typedef unsigned char u8_t;

 }

 {

 typedef unsigned char u8_t; /* Non-compliant - reuse */

 }

}

typedef float mass;

void func1 (void)

{

 float32_t mass = 0.0f; /* Non-compliant - reuse */

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union typedef or enumeration tag name associated with name may be the same as the structure, union

the typedeftypedeftypedef

See also

Rule 5.7

void func1 (void)

{

54
See also

Rule 5.7

Examples showing compliant and non-compliant code

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)
enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with

the typedef.

Example

void func (void)

{

 {

 typedef unsigned char u8_t;

 }

 {

 typedef unsigned char u8_t; /* Non-compliant - reuse */

 }

}

typedef float mass;

void func1 (void)

{

 float32_t mass = 0.0f; /* Non-compliant - reuse */

enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union typedef or enumeration tag name associated with name may be the same as the structure, union

the typedeftypedeftypedef

Example

void func (void)

{

 {

 typedef unsigned char u8_t;

 }

 {

 typedef unsigned char u8_t; /* Non-compliant - reuse */

 }

}

typedef float mass;

void func1 (void)

{

See also

Rule 5.7

Reference to related guidelines

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

MISRA C Introduction to MISRA C:2012

Presentation of the Guidelines (cont’d)

Dir 1.1 Any implementation-deÞ ned behaviour on which the output of the

program depends shall be documented and understood

C90 [Annex G.3], C99 [Annex J.3]

Category Required

Applies to C90, C99

 AmpliÞ cation

Appendix G of this document lists, for both C90 and C99, those implementation-deÞ ned behaviours

that:

� Are considered to have the potential to cause unexpected program operation, and

� May be present in a program even if it complies with all the other MISRA C guidelines.

All of these implementation-deÞ ned behaviours on which the program output depends must be:

� Documented, and

� Understood by developers.

Note: a conforming implementation is required to document its treatment of all implementation-

deÞ ned behaviour. The developer of an implementation should be consulted if any documentation is

missing.

All of these implementation-deÞ ned behaviours on which the program output depends must be:Þ

� Documented, and

� Understood by developers.

Note: a conforming implementation is required to document its treatment of all implementation-

deÞ ned behaviour. The developer of an implementation should be consulted if any docuÞ mentation is

missing.

Reference to one or more published
sources to be consulted for a fuller
understanding of the rationale

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Understanding MISRA C MISRA C is Part of a Process

Software Development Process

The highest payoff from the adoption of MISRA C is achieved
when it is used in the framework of a documented software
development process

The process must ensure, e.g.:

that software requirements are complete, unambiguous and
correct

that design specifications reaching the coding phase are
correct, consistent with the requirements and do not contain
any other functionality

that object modules produced by the compiler behave as
specified in the designs

that object modules have been tested, individually and
together, to identify and eliminate errors

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Understanding MISRA C MISRA C is Part of a Process

Software Development Process (cont’d)

MISRA C should be used before code reaches the review and unit
testing phases. . .

. . . otherwise a lot of rework and retesting has to be expected

Full requirements for safety-related software development processes
are outside the scope of MISRA C

Examples of development processes may be found in, e.g.:

IEC 61508

ISO 26262

RTCA DO-178C

CENELEC EN 50128

IEC 62304

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Understanding MISRA C MISRA C: Error Prevention, Not Bug Finding

MISRA C: Error Prevention, Not Bug Finding

MISRA C cannot be separated from the process of documented
software development it is part of

The use of MISRA C in its proper context is part of an error
prevention strategy which has little in common with bug finding

Violation of a guideline is not necessarily a software error

E.g., there is nothing intrinsically wrong about converting an
integer constant to a pointer when it is necessary to address
memory mapped registers or other hardware features

However, such conversions are implementation-defined and
have undefined behaviors, so Rule 11.4 suggests avoiding
them everywhere apart from the very specific instances where
they are both required and safe

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Understanding MISRA C MISRA C: Error Prevention, Not Bug Finding

MISRA C: Error Prevention, Not Bug Finding (cont’d)

The deviation process is an essential part of MISRA C

The point of a guideline is not “You should not do that”

The point is: “This is dangerous: you may only do that if

1 it is needed

2 it is safe

3 a peer can easily and quickly be convinced of both 1 and 2”

One useful way to think about MISRA C and the processes around
it is to consider them as an effective way of conducting a guided
peer review to rule out most C language traps and pitfalls

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Understanding MISRA C MISRA C: Error Prevention, Not Bug Finding

MISRA C: Error Prevention, Not Bug Finding (cont’d)

The attitude with respect to incompleteness is entirely different
between the typical audience of bug finders and the typical
audience of MISRA C

Bug finders are usually tolerant about false negatives and
intolerant about false positives

This is not the right mindset for checking compliance with
respect to MISRA C: false positives are a nuisance, but false
negatives imply other methods will have to be used to ensure
compliance

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Understanding MISRA C MISRA C: Error Prevention, Not Bug Finding

MISRA C: Error Prevention, Not Bug Finding (cont’d)

Another aspect that places MISRA C in a different camp from bug
finding has to do with the importance MISRA C assigns to reviews:

code reviews

reviews of the code against design documents

reviews of the design documents against requirements

(This fact has some counterintuitive consequences on the use of
static analysis)

Many MISRA rules have to do with code readability and
understandability

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C

Adoption

The highest payoff from the adoption of MISRA C is achieved
when it is adopted at the very beginning of a project. . .

. . . and it is systematically enforced with the help of a high-quality
tool

Imposing MISRA C on an existing code base with a proven track
record may be counterproductive if not done properly. . .

. . . this requires significant expertise and tools of even higher
quality (powerful deviation mechanisms, baselining, . . .)

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Tools

Manual vs Semiautomated Verification

It is entirely possible to manually verify code for compliance to
MISRA C

The cost of doing that properly is of course enormous

Tools are highly recommended to semiautomate the check for
compliance

Manual activities remain, such as:

Initial tool configuration

Tool configuration for deviation

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Tools

Manual vs Semiautomated Verification (cont’d)

A good tool will do a thorough job of automatically verifying
compliance for most MISRA C guidelines. . .

. . . but not all of them:

undecidable rules

directives

limitations of the tool (complexity-precision trade-off,
incomplete handling of extensions, . . .)

issues with the project being analyzed (unavailability of part
of the source code, extensive use of language extensions, . . .)

The remaining manual activities, and peer review, are greatly
facilitated by the level of partial compliance that can be quickly
achieved by using a good tool

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Tools

Tool Configuration: C is a Large Family of Languages

In C99, there are 112 implementation-defined behaviors

As each i.d.b. can be defined in 2 or more ways, there are more
than 2112 ≈ 5× 1033 possible languages

Actually, choosing integer and floating-types in {8, 16, 32, 64}
brings us to more than 1036 possible languages (dialects of C)

Alexander’s star: 7.24 × 1034 different positions

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Tools

C is a Large Family of Languages (cont’d)

Generally speaking, a given compiler can implement, via options,
several such dialects of C

For an extreme case, GCC/x86 64 implements, via options,
hundreds of dialects of C

As a consequences, the tool must adapt to the particular dialect
implemented by that compiler with that set of options (possibly for
each translation unit)

Further consequence: changing even one compilation option may
have important consequences

We have seen many projects whose MISRA C compliance was
completely led astray due to misconfiguration of the actual
language dialect implemented by the toolchain

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Tools

Predefined Macros

Another aspect that might require careful configuration of the tool
has to do with predefined macros

Some of them may be influenced by compiler options, which may
be given

on the command line

in environment variables

in files

Failing to capture the predefined macros correctly may result into
the wrong code being analyzed

This is the cause of many headaches (not to count where/how
header files are searched, compiler intrinsics and other extensions,
the linker, the librarian, . . .)

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Tools

Tool Configuration Related to the Toolchain

There are three possibilities:

1 the tool is integrated in the compiler/linker; all the required
information is there but, generally speaking:

such tools are not very good (limited audience, limited
investments, limited testing)
you change compiler and you will have to start from scratch

2 the tool assumes you carefully configure it:

very error-prone
someone changes the compiler options and you may have to
redo the configuration

3 the tool is smart enough

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Successful Adoption of MISRA C The Importance of Training

True Compliance Requires Staff Competence

Staff competence is a crucial requirement in order to carry out the
activities that allow describing a project as “MISRA Compliant”

Without a proper understanding of C pitfalls and of the reasons
behind each of the MISRA guidelines, developers often:

perceive the adoption of the guidelines as a useless burden

misunderstand messages output by the tool and do not know
what should be done

are unable to recognize false positives

change the code by trial-and-error in an attempt to silence the
tools (code quality may decrease!)

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

Conclusion

Conclusion

C is the most used language for the programming of embedded
systems

The advantages of C come with corresponding disadvantages that
severely impact safety and security: language subsetting is crucial!

MISRA C is the most authoritative subset of C for the
development of high-integrity embedded systems

MISRA C is integral part of a software development process, and
its adoption is radically different from bug finding

Good tools and proper formal training of personnel enables a
smooth and successful adoption of MISRA C into an organization

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

✶✿

Conclusion

The End

roberto.bagnara@bugseng.com

bagnara@cs.unipr.it

Roberto Bagnara et al., BUGSENG & AFMLab, Parma, Italy MISRA C and the Development of Critical Software

roberto.bagnara@bugseng.com
bagnara@cs.unipr.it

	The C Language
	Non-Definite Behavior
	Why Is C Not Fully Defined?

	MISRA C
	Historical Background
	Introduction to MISRA C:2012

	Understanding MISRA C
	MISRA C is Part of a Process
	MISRA C: Error Prevention, Not Bug Finding

	Successful Adoption of MISRA C
	The Importance of Tools
	The Importance of Training

	Conclusion

