

An Intel Company

Simone Fabris Sr Director, System Safety

#### Five technological levels for automated driving





#### **Regulatory status**

# Every driver shall always be able to control his vehicle or to guide his animals

Vienna convention on road traffic



# Larger than one company

The Automated driving revolution will impact the way products are conceived and brought to market.

Only through a coordinated strategy across these four areas can we as society and as an industry truly say we are comfortable and confident in the safety of Automated Vehicles.





#### Safety Standards

The development of a unique safety argument including ISO26262 and ISO21448 is key in resolving this debate.





## Integrating standards

Integration between safety strategies for ISO26262 and ISO21448 is key to achieve vehicle level reliability targets.

How to achieve ASIL-D targets for HW architectural metrics in case of automated driving?





# Integrating standards

Integration between ISO26262 and ISO21448: Functional safety meets performance.

Fusion algorithms as main diagnostic coverage for achieving ISO26262 targets for HW architectural metrics.

The better the performance, the better the diagnostic coverage.





# Human Driving Today

#### The balance between safety & efficiency

- H)

4 19 1

38



# How would you define "driving safely" for an AV?

A catch-all

# Avoid collisions at all costs

#### The AV Must Avoid Collisions at all Costs





#### What do humans do?

### **Explicit Traffic Rules**

- Establish **priority of road agent interests** to avoid collisions
- Come to complete stop at red lights
- Don't cross a double-yellow line
- Obey posted speed limits
- Yield to other road users when posted
- Set limits on vehicle operation













## Implicit Rules of the road

#### A general set of principles

- Keep a safe distance from the car in front of you
- Drive cautiously under limited visibility
- Don't drive slow in the fast lane
- Don't cut off other drivers

Flexible, culturally dependent





# **Responsibility Sensitive Safety**

An open, transparent, technology neutral safety model for autonomous driving

RSS digitizes the implicit rules of the road, providing a check on AV decision-making, and a technologyneutral performance benchmark for regulators

# **Responsibility Sensitive Safety**



# FormalizeIdentifyExecuteHuman notions of<br/>safe drivingA Dangerous SituationThe Appropriate ResponseImage: Comparison of the comparison of

Keep a safe distance longitudinally & laterally Safe distance compromised in both directions

Brake to restore safe longitudinal distance





# **Does it work?**







# RSS on NHTSA pre-crash scenario

## Summary



- AV safety is not a one company effort: society, academics, governments and industry need to establish the ecosystem for it to prosper
- □ For automated driving and ADAS, better performance equal more safety
- Safety of automated driving can't be judged only on a statistical level: it has to include a formal and deterministic set of rules
- RSS is an example of a safety concept that relies on the combination of robust perception algorithms and a set of deterministic rules



# **Rules of RSS**

Rules to verify AV safety & performance



Do not hit someone from behind

Do not cut-in recklessly



Right-of-Way is given, not taken

Be careful in areas with limited visibility

5

If you can avoid a crash without causing another, you must