Autonomous Real-Time Software & Systems Testing

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions Thomas M. Fehlmann, Zürich Euro Project Office AG E: <u>info@e-p-o.com</u> H: <u>www.e-p-o.com</u>

Automotive SPIN Italia, Orbassano (TO) – 22 February 2018

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Math. ETHZ Sigma for S ware 1991: Euro Project Office 1999: Akao Price 2001 for original commutation 2001: swissICT Expert for Software Metrics 2003: 2004: Member of the Board QFD Institute Deutschland 2007: CMMI for Software - Level 4 & 5 2009: Member of GUEPHISMA 2011: Net Promoter® Certified Associate 2013: Vice-President ISBSG 2016: Academic Member of the Athens Institute for Education and Research

GUFPI-ISMA

https://connect.eventtia.com/en/dmz/isma15/website

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Tre Eventi Metrici per anno (un giorno)

- Roma, in maggio
- Torino, Milano; nel nord, in settembre
- Napoli, Salerno, Caserta; nel sud, in dicembre
- ISMA 15

a Roma

- La conferenza internazionale del IFPUG torna in Italia dopo un anno: ISMA15 – che coincide con il 1° #EventoMetrico 2018 – si terrà a Roma dal 9 all'11 Maggio 2018 al Centro Congressi Frentani
- Gratuito per i soci GUFPI'ISMA; 61€ per i soci del nostro network
- La partecipazione al giorno della conferenza dà diritto ad 1 CEC IFPUG (programma IFPUG CEP) e a 7 PDU per il programma PMI CCR

Lean Six Sigma

Agile Processes

Project Estimations

Lean Six Sigma

Agile Processes

Project Estimations

What is an Application?

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

What is a Test?

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

A Software Test has

- Several Test Stories
 - Explaining the Value for the Customer
 - Weighted by Customer's Priority for the Test Story

• A Test Story has

- Many Test Cases
- Exploring different aspects favorable and dismal of the test story

• A Test Case has

- Test data and test stubs to run the software under test
- An Outcome
 - Passed: all responses according expectations
 - Failed: at least one test case didn't yield the expected response

What is a Test Case?

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

• A Test Case has

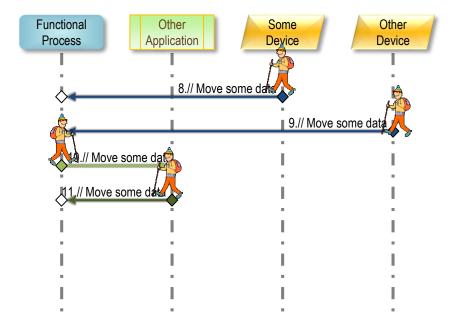
- Entry Data ("Test Data")
 - Explaining the environment for the test case
 - Typically valid, invalid, borderline data
 - Normal and disturbed communication services
 - A known sequence of data movements executed
 - Defining Test Coverage and Test Size
- Test Size
 - Every Test Case has a size: the number of data movements executed by the test
 - Total Test Size is the number of data movements executed by all test cases

Test Coverage

• Percentage of data movements covered with test cases

 $\{x_1, x_2, \dots, x_n\} \to y$

Visualizing Software Testing


Customer Orientation

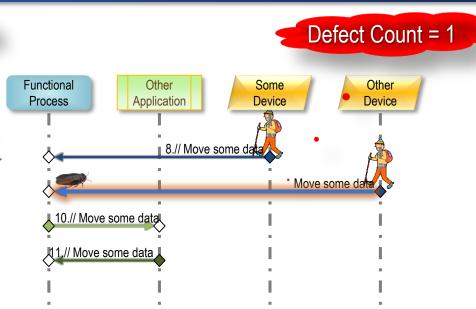
Lean Six Sigma

Agile Processes

Project Estimations

- Tester sees selected sequences in the Data Movement Map
- Tester can "walk" the data movements when planning or executing tests
 - Makes functionality visible to the development team
 - Localizes defects that impact functionality
 - Supports communication between testers, users, and developers

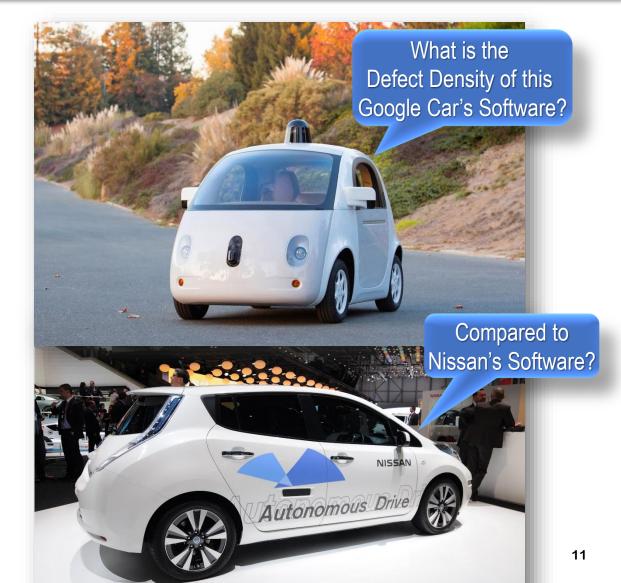
Functionality, Defect Size, and Defect Density


Test Size = 4

- Customer Orientation
- Lean Six Sigma
- Agile Processes

Project Estimations

- What happens if data movements don't work as expected, have defects instead?
- Testers mark and count data movements where defects have been detected
- Size Metric:
 - ISO/IEC
 19761
 COSMIC


- Functional Size
 - Number of Data Movements needed to implement required functionality
- Test Size
 - Number of Data Movements executed in Tests
- Test Story
 - Collection of Test Cases aiming at certain FURs
- Defect Count
 - Number of Data Movements affected by some defect detected in a test story

Bad Mathematics with Testing

Customer Orientation

Lean Six Sigma

Agile Processes

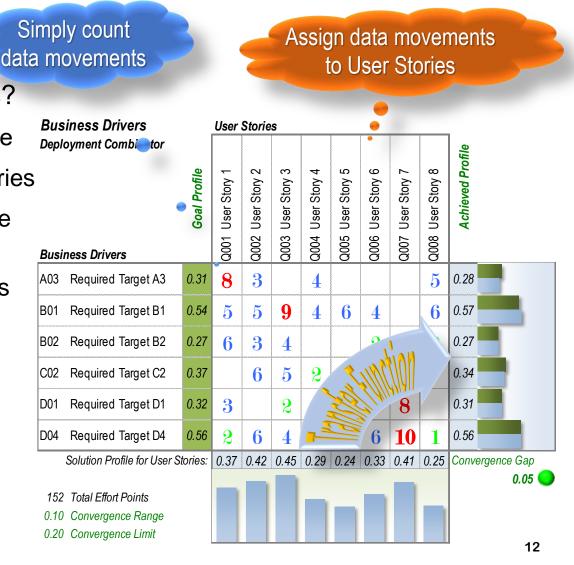
Project Estimations

- What is the Size of Software?
 Lines of (undocumented?) Code?
 Bug tracking systems refer to code
 What is a Software Defect?
 An entry in a bug tracking system??
 Bug tracking systems cannot distinguish multiple bug variances
 - What is a Defect Density?
 - Number of bug entries in a bug tracking system per line of code????
 - Are consumers trumped?

Functional Effectiveness

Customer Orientation

Lean Six Sigma


Agile Processes

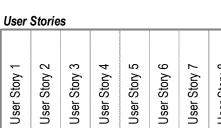
Project Estimations

- How do we know an application data implements customer's business drivers?
 - First, find the business drivers' goal profile
 - Deploy business drivers against user stories
 - Count the data movements that add value to some of the business drivers
 - This yields a transfer function that creates an achieved priority profile for the drivers

		Business Drivers	Weight	Pr
A Group A	A03	Required Target A3	13%	0
B Group B	B01	Required Target B1	23%	0
	B02	Required Target B2	11%	0
C Group C	C02	Required Target C2	16%	0
D Group D	D01	Required Target D1	13%	0
-	D04	Required Target D4	24%	0

ght	Profile	
6	0.31	
6	0.54	
6	0.27	_
6	0.37	
6	0.32	
6	0.56	

Functional Effectiveness


- How do we know an application implements customer's business drivers?
 - First, find the business drivers' goal profile
 - Deploy business drivers against user stories
 - Count the data movements that add value to some of the business drivers
 - This yields a transfer function that creates an achieved priority profile for the drivers

Check the Convergence Gap!

		Business Drivers	We
A	Group A	A03 Required Target A3	1
В	Group B	B01 Required Target B1	2
		B02 Required Target B2	1
C	Group C	C02 Required Target C2	1
D	Group D	D01 Required Target D1	1
		D04 Required Target D4	2

eight	Profile	
3%	0.31	
23%	0.54	
1%	0.27	
6%	0.37	
3%	0.32	
24%	0.56	

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer **Functions** ro project office Master your project

Perfect

Fit!

rofile

Test Coverage

	Test Coverage		Test	Storie	s		RI) _	6			8			1	8			T 1		-	(T		
Customer Orientation Lean Six Sigma	Deployment Combinator	Goal Test Coverage	Q1-1 Test Story Q1-1	Q1-2 Test Story Q1-2	Q1-3 Test Story Q1-3	Q1-4 Test Story Q1-4	Q2-1 Test Story Q2-1	Q2-2 Test Story Q2-2	Q3-1 Test Story Q3-1	Q3-2 Test Story Q3-2	Q4-1 Test Story Q4-1	Q4-2 Test Story Q4-2	Q4-3 Test Story Q4-3	Q5-1 Test Story Q5-1	Q5-2 Test Story Q5-2	Q6-1 Test Story Q6-1	Q6-2 Test Story Q6-2	Q7-1 Test Stor		in ⁻	Fest	Stor	st Cases y x _i · Story y _j	
	User Stories	0.37	<u>9</u>	<u>a</u>	<u></u>	<u>ਰ</u> 4	Ø	Ø	Ø	<u></u>	a	ø	Ø	<u></u>	Ø	Ø	<u></u>	Ø	Ø	<u> </u>	<u>a</u>	0.40		
	Q002 User Story 2	0.42	4	6	2		5	10														0.40		
Agile Processes	Q003 User Story 3	0.45	2		4	4	4		12	5												0.46		A.
	Q004 User Story 4	0.29					1	2	2		10	5	5	2	2							0.26		
	Q005 User Story 5	0.24												6	9	2	3					0.21		
Project Estimations	Q006 User Story 6	0.33														5	7	7	2			0.36		
	Q007 User Story 7	0.41									1					5	4	7	7	2		0.40		
	Q008 User Story 8	0.25													2	2	3			7	4	0.25		
Transfer Functions	Ideal Profile for Test	Stories:	0.35	0.23	0.15	0.20	0.24	0.26	0.35	0.13	0.18	0.08	0.08	0.10	0.17	0.27	0.32	0.31	0.20	0.26	0.15	Conve	ergence Gap 0.06	<u> </u>
	198 Total Test Size0.10 Convergence Range0.20 Convergence Limit																							14




Lean Six Sigma

Agile Processes

Project Estimations

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Truck Platooning

0

Truck Platooning

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions Truck Platooning comprises a number of trucks equipped with state-of-the-art driving support systems – one closely following the other

- This forms a platoon with the trucks driven by smart technology, and mutually communicating
- Truck platooning is innovative and full of promise and potential for the transport sector
- Source: <u>https://www.eutruckplatooning.com</u>

Truck Platooning – State of the Art

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

- Currently, distances between trucks must be such that a truck can be stopped by its driver when needed
 - This leads to a minimal distance of minimum 22 m at 80 km/h
 - Corresponds to 2 sec reaction time
- An exemption process was needed to allow the 2016 Truck Platooning Challenge to happen
 - 0.5 sec reaction time 5.5 m minimum distance
 - Six platoons from Sweden and Germany to Rotterdam harbor

- Challenges:
 - Many lessons learned
 - Other traffics' unsafe behavior
 - Unexpected situations at ramps

Truck Platooning Challenges

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

- What happens if two platoons meet on a ramp?
- How do cars or other trucks merge with traffic on a ramp?
- What if road condition changes suddenly? E.g., with rain or snow?

20

Truck Platooning Software

Steer Passes Steering Log Truck Control Calified Table Truck Strates Dates Russ Rases ٢ ٢ 0 ()) Ny 1 4 \bigcirc

Customer Orientation

Lean Six Sigma

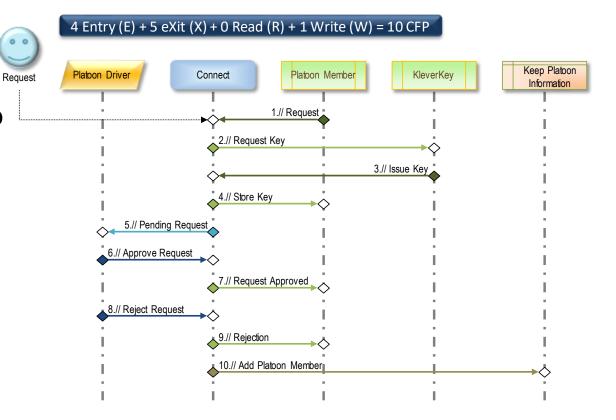
Agile Processes

Project Estimations

Transfer Functions

31 Entry (E) + 25 eXit (X) + 9 Read (R) + 19 Write (W) = 84 CFP

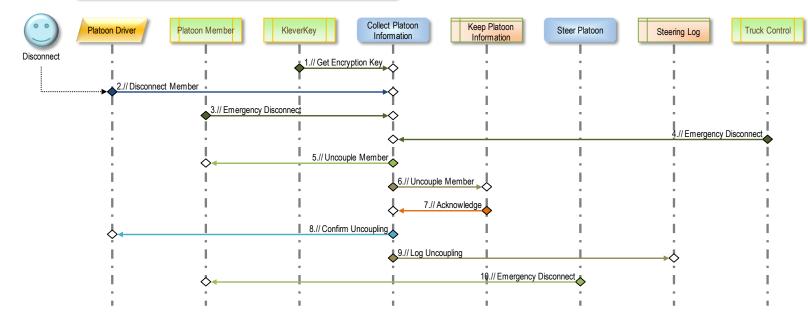
- Not too complex
- Must know parameters of other trucks
 - Weight
 - Load
 - Motorization
 - Brake efficiency
- Risks for safety with other traffic
 - Detect unexpected situations
 - Protect against communication loss
- Risks for privacy



Connect to Platoon

- Customer Orientation
- Lean Six Sigma
- Agile Processes
- Project Estimations

- A platoon member software issues a connection request
- Functional process Connect requests a key from KleverKey to encrypt all communications
- Store key in the platoon member application for further use with all communication
- There is an automatic check whether the requesting software is capable to support platooning
- Request is approved or rejected by platoon driver



Disconnect from Platoon

4 Entry (E) + 3 eXit (X) + 1 Read (R) + 2 Write (W) = 10 CFP

- Disconnect can originate
 - By the platoon driver
 - By some of the platoon members
 - While steering the platoon and encountering an obstacle

- Platoon member must take over control
 - By a human driver, or
 - By its own autonomous truck control

Lean Six Sigma

Agile Processes

Project Estimations

recorded for

future learning

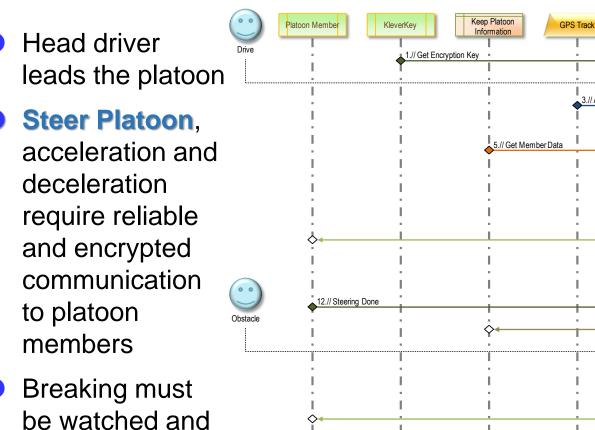
Steering Log

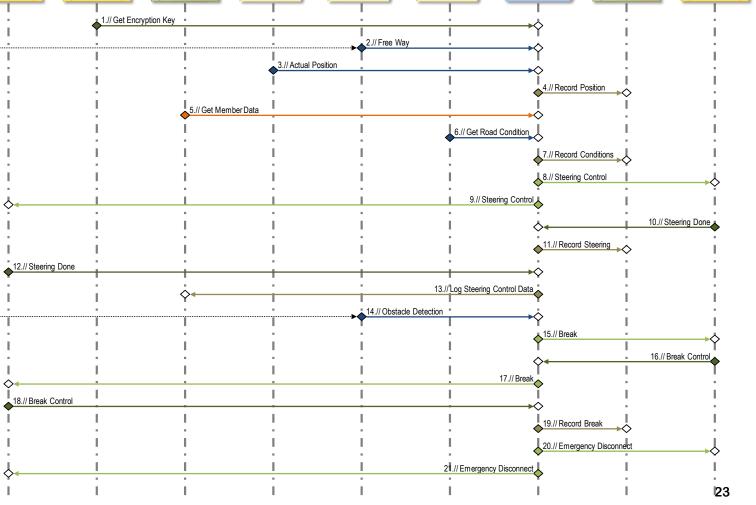
Truck Control

Drive Around Obstacles

Steer Platoon

Road Sensor


9 Entry (E) + 6 eXit (X) + 1 Read (R) + 5 Write (W) = 21 CFP


Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Autonomous Testing while Running the Platoon

5 Entry (E) + 2 eXit (X) + 3 Read (R) + 5 Write (W) = 15 CFP

Customer Orientation

Lean Six Sigma

Agile Processes


Project Estimations

Transfer **Functions**

The functional process **Test Platoon** generates the additional test

cases needed for assessing new platoon members

Adapt to changing road conditions, truck data, load characteristics etc.

Extending Test Cases

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions Level 1 Parametrization of same controls

Level 2 New controls, same response Existing test cases without changing logic, changing test data only

 New controls with new test data but response as before

Level 3

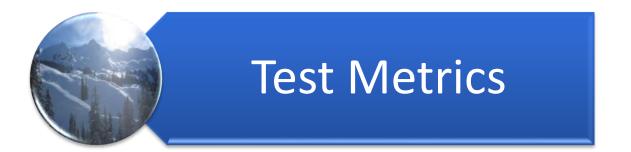
Same controls, different response

Level 4

New controls, new response

 Same controls with new test data generate new response

 Unrelated with previous test cases but still within the same test story with a new, unprecedent response



Lean Six Sigma

Agile Processes

Project Estimations

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

0

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Analyze Customer's Needs

- Identify topics
- Make sure they are relevant
- And can be influenced
- Get a Response Profile
 - Use Analytic Hierarchy Process
 - Use Net Promoter[®] Score
 - Use Go to the Gemba
 - Ask Customers and Users
 - Combine all them for getting the Voice of the Customer

Business Drivers

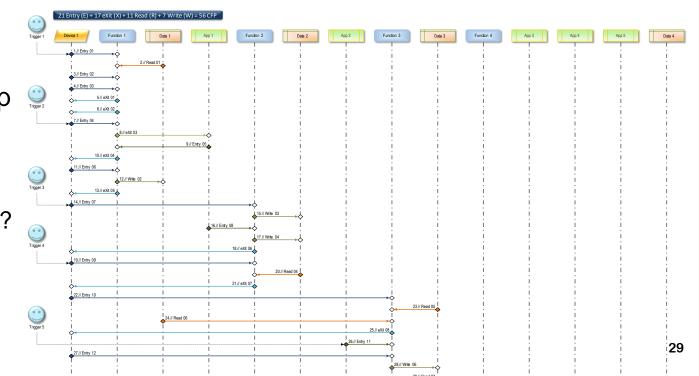
Get Priority

	Business Drivers	Attributes	Weight	Profile	
A Group A	A03 Expected Response A3	Attribute A03-1	13%	0.31	
B Group B	B01 Expected Response B1	Attribute B01-1	23%	0.54	
	B02 Expected Response B2	Attribute B02-1	11%	0.27	
C Group C	C02 Expected Response C2	Attribute C02-1	16%	0.37	
D Group D	D01 Expected Response D1	Attribute D01-1	13%	0.32	
	D04 Expected Response D4	Attribute D04-1	24%	0.56	

AHP Priorities Get Priority	A Group A	B Group B	C Group C	D Group D	Weight	Ranking	Profile
A Group A	1	1/5	2	1/3	16%	4	0.31
B Group B	5	1	1/2	1/3	23%	2	0.44
C Group C	1/2	2	1	1/2	20%	3	0.37
D Group D	3	3	2	1	41%	1	0.76

Customer Orientation

Lean Six Sigma


Agile Processes

Project Estimations

Get User Stories	

- Who wants it?
- What exactly do they want?
- How important is it?
- What's the purpose?
- Draw a Data Movement Map
 - What are the Objects?
 - What data is moved?
 - How important are the data?
 - How vulnerable is data?

					Pric	ority
User Stories Topics	As a [functional user]	I want to [get something done]	such that[quality characteristic]	so that [value or benefit]	Weight	Profile
1) Q001 User Story 1	User	do something	something happens	it's valuable	13%	0.37
2) Q002 User Story 2	User	do something	something happens	it's valuable	15%	0.42
3) Q003 User Story 3	User	do something	something happens	it's valuable	16%	0.45
4) Q004 User Story 4	User	do something	something happens	it's valuable	10%	0.29
5) Q005 User Story 5	User	do something	something happens	it's valuable	9%	0.24
6) Q006 User Story 6	User	do something	something happens	it's valuable	12%	0.33
7) Q007 User Story 7	User	do something	something happens	it's valuable	15%	0.41
8) Q008 User Story 8	User	do something	something happens	it's valuable	9%	0.25

Customer Orientation

Lean Six Sigma

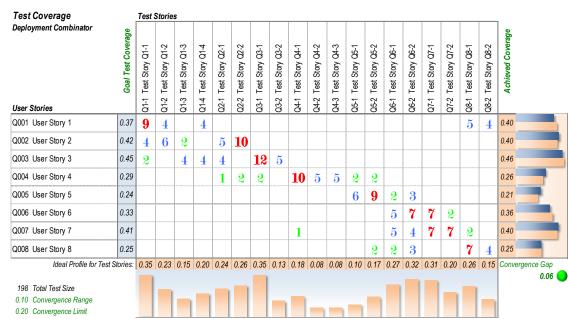
Agile Processes

Project Estimations

- Map Data Movements to User Stories
 - Why do you use which data?
 - Which data movement functionality supports specific user stories?
- Count data movements per user story
 - Is the functionality needed?
 - For which user story?
 - Does the convergence gap close?
 - If not, add more data movements to the user story's support count
 - Repeat until the convergence gap closes

	iness Drivers		User Stories							8	1
Deplo	oyment Combinator	Goal Profile	Q001 User Story 1	Q002 User Story 2	Q003 User Story 3	Q004 User Story 4	Q005 User Story 5	Q006 User Story 6	Q007 User Story 7	Q008 User Story 8	Achieved Profile
Busir	ness Drivers	8	8	8	ð	8	8	8	ð	ð	
A03	Expected Response A3	0.31	8	3		4				5	0.28
B01	Expected Response B1	0.54	5	5	9	4	6	4		6	0.57
B02	Expected Response B2	0.27	6	3	4			2		2	0.27
C02	Expected Response C2	0.37		6	5	2		2	5		0.34
D01	Expected Response D1	0.32	3		2		4	3	8		0.31
D04	Expected Response D4	0.56	2	6	4	5	2	6	10	1	0.56
	Solution Profile for User S	tories:	0.37	0.42	0.45	0.29	0.24	0.33	0.41	0.25	Convergence Gap
	Total Effort Points Convergence Range Convergence Limit										0.05 🔴

Customer Orientation


Lean Six Sigma

Agile Processes

Project Estimations

- A test story supports more one or than one user story with different impact
- This is an expert judgment, not a count, not automatic
- It is testers' expertise to select enough and relevant test stories
- Add Test Cases
 - Identify the data movements needed to execute each test case
 - Count the number of data movements
 - Repeat until convergence gap closes such that test stories cover user stories

Customer Orientation

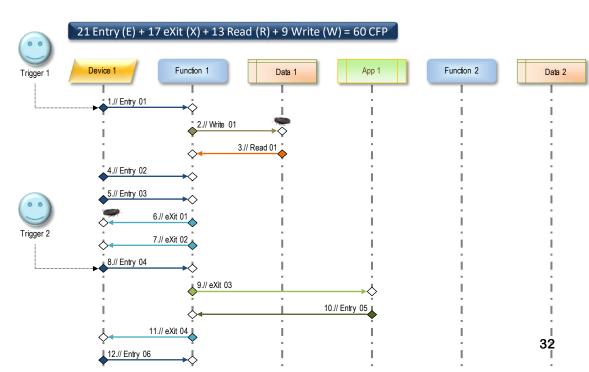
Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Run the Initial Tests


- Count defects
- Compare defects count with test response profile
 - If defects are equally spread the defects count profile should match the test response profile
 - If not, investigate special causes
- Repeat until defects are eliminated
 - It might be necessary to add more test stories and test cases
 - Keep convergence gap closed

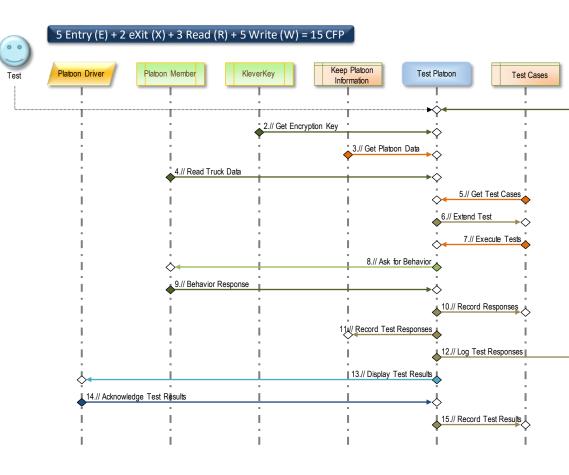
Test Case Measurements for Test Story Q1-3

Test Story No. 3

Defects Observed

Q1-3	Test Story Q1-3	Expected Response	CFP	Name	Label
Q1-3.1	Test Data Q1-3	Expected Response Q1-3	4		
Q1-3.2	Test Data Q1-3	Expected Response Q1-3	2	#002	Unit not checked
	Test Story Contribution (CFP):	Test Size	6	1	Defect Count

Customer Orientation


Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions Set up the Automatic Test Generator

- Generate Level 1 to Level 4 test cases
- Count data movements automatically
- Select test cases for execution based on convergence gap
- Record test results to the cloud
- Do Dry Runs
 - Let trucks run; play the IoT concert!
 - Save test results to the cloud
 - Watch defects found
 - Watch convergence gaps

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

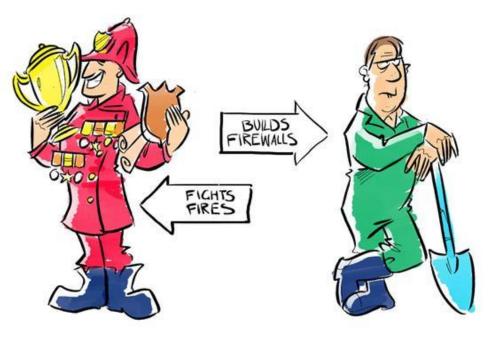
Transfer Functions

Analyze Test Results

- Compare defects with test response profile
- Identify weak spots
 - If defects are equally spread the defects count profile should match the test response profile
 - If not, investigate special causes
- Act upon Findings
 - Continuously improve the behavior of autonomous systems

Test Status Summary

Total CFP:	Test Size in CFP:	198	
		Test Intensity in CFP:	3.3
Defects Found in Total:	3	Defect Density:	1.5%
Defects Pending for Removal:	3	Data Moves Covered:	98%



Unresolved Problems and Weaknesses

- COSMIC counts are not mainstream
 - Important code quality tools such as SonarQube do not (yet) count functional size automatically
 - Testing metrics are virtually unknown
 - Customers do not understand neither size nor test metrics
 - The current hype for autonomous car driving hides the need for safety and privacy
 - Approach is not easily carried over to ISO/IEC 20926 IFPUG Function Points

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Lean Six Sigma

Agile Processes

Project Estimations

- Autonomous Real-Time Testing is something immediately needed that will become highly important in the near future
 - Autonomous cars never will hit the roads without autonomous real-time tests
 - IoT is bound for failure without autonomous real-time tests
 - ICT's future depends from autonomous real-time tests
- It's a good idea to get acquainted with the concept early enough
 - Autonomous things need Software Metrics!
 - Measure Software Tests!

Questions?

Customer Orientation

Lean Six Sigma

Agile Processes

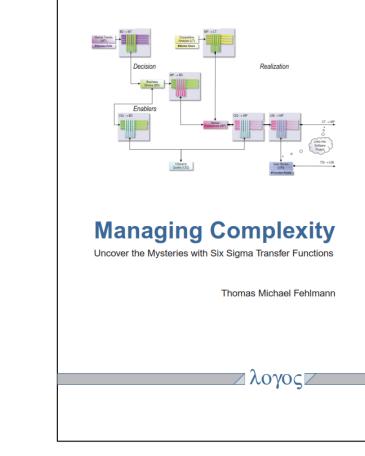
Project Estimations

Customer

Orientation

Lean Six Sigma

Agile Processes


Project Estimations

Transfer

Functions

New Book on Six Sigma Transfer Functions

Managing Complexity

Uncover the Mysteries with Six Sigma Transfer Functions

Thomas Michael Fehlmann

2017, 394 pages ISBN 978-3-8325-4406-5 Price: 49.00 €

To purchase, please contact the bookselling trade or order online from Logos Press

Logos Verlag Berlin GmbH · Comeniushof – Gubener Str. 47 · D-10243 Berlin

🛛 λογος 🗖 🗖

Tel.: +49 (30) 42 85 10 90 · Fax: +49 (30) 42 85 10 92 · Internet: http://www.logos-verlag.com