The Qualification of Software Tools
in Compliance with ISO 26262

Roberto Bagnara

University of Parma

hugt-eng

http://bugseng.com

17th Workshop on Automotive Software & Systems
Milan, February 20, 2020

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

http://bugseng.com

Outline |

@ Prologue

9 Tool Qualification in General

© Tool Qualification with 1ISO 26262

e Qualification Kits

© Conclusion

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Disclaimer

I am a member of the MISRA C Working Group and of ISO/IEC
JTC1/SC22/WG14, a.k.a. the C Standardization Working Group

however

the views expressed in this presentation and the accompanying
paper are mine and should not be taken to represent the views of
either working group

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Prologue
Do You Want to Reason in Assembly?

f: and| —20(%rbp), %eax
.LFBO: movl| %eax , %eax
.cfi_startproc addq %rax, —8(%rbp)
pushg %rbp add| $1, —12(%rbp)
.cfi_def_cfa_offset 16 .L2:
.cfi_offset 6, —16 movl —12(%rbp), %eax
movq %rsp , %rbp cmpl —20(%rbp), %eax
.cfi_def_cfa_register 6 jb L3
mov| %edi, —20(%rbp) movq —8(%rbp), %rax
movq $0, —8(%rbp) popq %rbp
movl $0, —12(%rbp) .cfi_def_cfa 7, 8
jmp L2 ret
.L3: .cfi_endproc
mov| —12(%rbp), %eax

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Prologue
Orin C?

#include <stdint.h>

uint64_t f(uint32_.t n) {
uint64_t total = 0;
for (uint32_t i = 0; i < n; ++i) {
total += i & n;

}

return total;

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Prologue

Programming Critical, Resource-Constrained Embedded

Systems

C usage is pushed by very strong economic reasons

Unrestricted C has also very serious problems: non-definite
behaviors

Ada, too, has non-definite behaviors

Other more defined high-level languages are not portable, flexible
or efficient enough

Only two sensible options remain:

Q Stick to MISRA C/C++, compile C/C++ to assembly, and
reason about programs at the source code level

© Reason about programs at the assembly code level

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tools Are Badly Needed

Manually checking for MISRA C/C++ compliance is unpractical
Manually translating C/C++ to assembly is unpractical

Tools are needed, for these and for many other activities related to
the development of embedded systems

To what extent can the tools be trusted?

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification in General
Tool Qualification

The development of safety-critical software is regulated by
standards such as:

CENELEC EN 50128 for railway
RTCA DO-178C for airborne software
ECSS-Q-ST-80C for European space applications
IEC 61508 for industry in general
IEC 62304 for medical devices
ISO 26262 for automotive

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification in General

Tool Qualification (cont'd)

Due to the complexity of software, development and verification
activity, de facto, have to rely on the use of tools

Malfunction of the tools may compromise the integrity of, or fail to
detect defects in, the application software

In order to mitigate this risk, the standards prescribe integrity
requirement on tools: this is usually called tool qualification

ISO 26262:2018

[The objective of the] qualification of the software tool [is] to create
evidence that the software tool is suitable to be used to support the
activities or tasks required by the ISO 26262 series of standards (i.e. the
user can rely on the correct functioning of a software tool for those
activities or tasks required by the ISO 26262 series of standards).

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification in General

Tool Qualification (cont'd)

In the different standards, to a varying degree, tools are
categorized depending on:

@ potential impact of tool failure

@ likeliness such failure is detected

Depending on the tool categorization, standards:
@ put requirements on tool development
@ put requirements on tool documentation

@ put requirements on user skills: all software team members
including tool users

@ put requirements on tool qualification methods

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification in General

Tool Qualification (cont'd)

An important distinction is between
@ tools that can introduce defects in the application software,
e.g., a C/C4++ compiler
@ tools that can fail to detect defects in the application
software, e.g., a MISRA C compliance checker

Another crucial aspect is the scope of use of the tool!

@ if the assembly code generated by the C compiler is manually
verified, the qualification requirements on the compiler can be
softened or eliminated

@ if the MISRA C compliance checker is used to justify the
elimination of testing activities its qualification requirements
are increased

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification in General

Tool Qualification (cont'd)

Finally, it must be taken into account that tools qualification can
only be performed in the specific context of their actual use

The tool vendor can (and, in some cases, must) supply material
that simplifies/enables the tool user to qualify the tool in the
specific use context

However, the final responsibility of the tool choice and qualification
lies with the tool user

As a consequence, all bragging about “certified tools” amounts to
pure and simple marketing hoax

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO 26262

Tool Qualification with 1SO 26262

ISO 26262:2018, Part 8, Section 11: “Confidence in the use of
software tools”

Describes the process of tool qualification for a specific use case
The qualification process comprises:

© Planning of usage

© Evaluation

© Qualification methods

© Validation and mitigating actions

© Documentation and review

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO 26262

1. Planning of usage

Determine:

a) tool identification
tool configuration
tool use case

)
)
d) tool execution environment
) maximum ASIL

)

qualification methods

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with IS

1. Planning of usage (cont'd)

Requirements:
a) description of the tool features and functions
) tool user manual and, possibly, tool safety manual
c) description of tool operational environment
)

description of the expected tool behavior under anomalous
conditions

e) description of known tool malfunctions and appropriate
safeguards, avoidance or work-around measures

f) description of measures to prevent or detect malfunctions

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO 26262

2. Tool evaluation

Tool Impact Tool error Detection
(T, TI2) (TD1,TD2, TD3)

Tool Confidence Level
(TCL1,TCL2,TCL3) — . pone

TCL1
l TCL2, TCL3
ASIL | Qualification Methods
(A, B,C,D) (Use, Evaluate, Validate, Develop)

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with I1SO 2

3. Qualification methods

+) Increased confidence from use

(

(+
(++
(++

Evaluation of the tool development process
Validation of the tool

)
)
)
)

Development in accordance with a safety standard

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with I1SO 2

4. Validation of the tool

Compliance with the functional specification by testing given the
specific use-case

Must take place in the user tool operational environment

With the precise configuration used in production

Must define mitigations for tool malfunctions

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with I1SO 2

Compiler Validation

evidence
Requirements ‘ o Validation
)
— L — — —— — —/', —

- ;
; N

requirements /!

ISO C/C++ traceability ‘
(language) compiler
specification . testing /
\ — = — — ,'I’ — _ -

implementation ‘ — ’ unit testing

’
’

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with I1SO 2

Compiler Validation: Unit Testing Is Not Enough

!

C/C++ Compiler

|

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with I1SO 2

Coverage at Source Level

#include <stdint.h>

uint64_t f(uint32_t n) {
uint64_t total = 0;
for (uint32_.t i = 0; i < n; ++i) {
total += i & n;
}
return total;

}

Complete coverage at source level with one test: £(1)

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO 26262

Coverage at Assembly Level:

f:

.LFBO:
.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp , %rbp
.cfi_def_cfa_register 6
mov| %edi, —20(%rbp)
movq $0, —8(%rbp)

movl $0, —12(%rbp)
jmp L2

L3:
mov| —12(%rbp), %eax

-00

andl
movl
addq
addl
L2:
movl
cmpl
jb
movq
popq

—20(%rbp), %eax
%eax , %eax
%rax, —8(%rbp)
$1, —12(%rbp)

—12(%rbp), %eax
—20(%rbp), %eax
L3

—8(%rbp), %rax
%rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

Without optimization complete coverage also at assembly level

with one test: f£(1)

Roberto Bagnara, BUGSENG & University of Parma

Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO

2

Coverage at Assembly Level: -Ofast

f:
.LFBO:

.cfi_startproc

testl
je
leal
cmpl
jbe
movl
movdqa
movd
xor
shr
movdqa
pxor
pxor
pshufd
L4
movdqa
addl
paddd
pand
movdqa

%edi, %edi

L7

—1(%rdi), %eax
$3, %eax

.L8

%edi, %edx
LCO(%rip), Y%xmm2
%edi , Yxmm7

Y%eax , %eax

$2, %edx

LC1(%rip), Y%xmmb5
Yexmml, Yxmml
Yxmm3, Yxmm3
$0, %xmm7, %xmm6

Yxmm2, Yxmm0
$1, %eax

Yxmm5, Yxmm2
%xmm6, %xmm0
%xmm0, %Yxmm4

punpckhdq %xmm3, %xmmO
punpckldg %xmm3, %xmm4

paddq
paddq
cmpl
jb
movdqa
movl
psrldq
andl|
paddq
movq

Yoxmm4, Yxmm0
Yexmm0, Yxmml
%edx , %eax
.L4

Y%xmml, %xmmO0
%edi, %edx
$8, Y%xmmO
$—4, %edx
%xmm0, %xmml
Y%xmml, %rax
%edx , %edi
.L11

%edi, %ecx
Y%edx , %ecx
Y%rcx , %rax
1(%rdx), %ecx
%edi, %ecx

L1
%edi, %ecx
Y%rcx , %rax

leal
cmpl
jbe

andl
addl
addq
cmpl
jbe

andl
addq
ret

L7

xor

L1

ret

.L11:

ret

.L8:

xorl
xorl
jmp

2(%rdx), %ecx
%ecx , %edi

L1

%edi, %ecx
$3, %edx
%rcx , %rax
%edx , %edi
.L1

%edx , %edi
%rdi , %rax

%eax , %eax

Y%edx , %edx
Y%eax , %eax
.L3

.cfi_endproc

With optimization, £ (1) coverage is incomplete at assembly level

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO 26262

MISRA Static Analyzer Validation

evidence

Requirements ‘ o Validation
— — — — — ——I,'I —
- /
/ ISO d requirements /
an traceability ' . \
(MISRA C/C++ @ MISRA-checking
language / tool testing
specifications
\ — — — — ,'I,— — — -

implementation ‘ — ’ unit testing

’
’

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1ISO 26262

MISRA Checker Configuration: C is a Large Family of

Languages

In C99, there are 112 implementation-defined behaviors

As each i.d.b. can be defined in 2 or more ways, there are more
than 2112 ~ 5 x 1033 possible languages

Actually, choosing integer and floating-types in {8,16,32,64}
brings us to more than 103° possible languages (dialects of C)

Alexander’s star: 7.24 x 1034 different positions

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1SO 26:

C is a Large Family of Languages (cont'd)

Generally speaking, a given compiler can implement, via options,
several such dialects of C

For an extreme case, GCC/x86_64 implements, via options, more
than one hundred thousands of dialects of C

As a consequences, the tool must adapt to the particular dialect
implemented by that compiler with that set of options (possibly for
each translation unit)

Further consequence: changing even one compilation option may
have important consequences, including analyzing the wrong code!

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Tool Qualification with 1SO 26:

5. Documentation and review

@ Software tool criteria evaluation report

© Software tool qualification report, typically resulting in
updates to the tool safety manual

© Confirmation review by an independent party

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Qualification Kits
Qualification Kits

| they are well done, they can decrease the effort of tool
qualification by one to two orders of magnitude
They must contain:

Documentation and documentation templates (if a tool safety
manual is not there it is a bad sign)

Validated test suites allowing for thorough validation of all
output formats and take into account all relevant
implementation-defined aspects of C/C++-: this requires
thousands of tests for a MISRA checker, and tens of
thousands of tests for a compiler

Possibility for users to quickly add their own test cases

Test automation machinery supplied in source form for
inspection

Possibility of repeating each test completely independently
from the qualification kit

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

Conclusion
Conclusion

Tool qualification is an essential requirement for using tools in
safety-related developments

We have covered the basic process for ISO 26262, which is not
very different from the process described in other functional safety
standards

It is a complex process if done in isolation, it is straightforward if
done with the help of a good qualification kit
There are advantages besides checking the box:

@ Sleeping better (not so with a so-called “tool certificate)

@ Decouple application development from tool testing

@ Reduced time-to-market

With a good qualification kit, or at least a good validation suite, it
is not rocket science

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

The End

Questions?

info@bugseng.com
roberto.bagnara@bugseng.com

Roberto Bagnara, BUGSENG & University of Parma Tool Qualification in Compliance with ISO 26262

info@bugseng.com
roberto.bagnara@bugseng.com

	Prologue
	Tool Qualification in General
	Tool Qualification with ISO 26262
	Qualification Kits
	Conclusion

