

intacs[™] PRM/PAM Hardware Engineering (HWE)

Intacs[™] Working Group 'HW Engineering Processes'

Carlo Donzella Giuseppe Pepe Claudio La Rocca

intacs [™] | Herderstr. 7 | D-51147 Cologne | Germany | www.intacs.info | office@intacs.info

- © intacs[™] 2018. All rights reserved. The copying, use, distribution or disclosure of the confidential and proprietary information contained in this document is strictly prohibited without prior written consent. Violations shall be prosecuted.
- intacs is registered with the European trademark office.
- Improvement suggestions? Please use the ticket system at www.intacs.info
- Interested to cooperate? Please get in touch via office@intacs.info
- Version information
 - Module version/release date: see filename
 - Module PAM applicability: Hardware
 - Module status: released
- Authors and copyright
 - The copyright of all training course materials is retained by intacs on behalf of the contributing training providers.

PRM/PAM Hardware Engineering (HWE)

- 1. Background & history
- 2. The "plug-in" concept
- 3. intacs[™] working group "HW Engineering Processes"
- 4. Constraints and drivers
- 5. The four HWE processes
 - HWE.1 Hardware Requirements Analysis
 - HWE.2 Hardware Design
 - HWE.3 Verification against Hardware Design
 - HWE.4 Verification against Hardware Requirements
- 6. Traceability and consistency
- 7. Planned targets for 2020
- 8. Conclusions

International Assessor Certification Scheme

PRM/PAM Hardware Engineering (HWE)

intacs[™] Working Group 'HW Engineering Processes'

Version:	1.0 (1 st Release)
Release Date:	Nov 15 th 2019
Distribution:	Public
Status:	Released
Contributors (alphabetical order):	ART S.p.A., Audi AG, Brose Fahrzeugteile GmbH & Co. KG, Continental Automotive GmbH, Dräxlmaier Group, Exida Group, Infineon, ITK Engineering GmbH, Kugler Maag Cie GmbH, Lorit Consultancy GmbH, Preh GmbH, Robert Bosch GmbH, Schaeffler Technologies AG & Co. KG, Sharpen360, SynSpace Group GmbH, Valeo Siemens eAutomotive Germany GmbH, WABCO GmbH & Co. KG, ZF Friedrichshafen AG

Background & history

- From its first edition (published in 2005) to PAM 2.5 (published in 2010) Automotive SPICE[®] identified only one group of engineering processes (the ENG group). Within this generic group, only two engineering domains were explicitly covered: System and Software.
- Automotive SPICE[®] v3.0 introduced process groups for different engineering domains (SWE and SYS). However, the SYS process group is still SW centric.
- In the automotive industry, a significant number of products are mechatronic products, i.e. comprising mechanical, electrical, electronical, electro-mechanical elements, and software.
- There is no overall Process Assessment Model yet providing indicators for all these product levels and aspects.
- Automotive SPICE [®] v3.0 introduced a "Plug-in" concept, allowing for hardware and mechanical lifecycle processes to be placed below the SYS.x and beside the SWE.x processes.
- The goal of the working group 'HW Engineering Processes' was to fill this gap by satisfying the growing need of companies to either assess hardware separately, or to assess overall mechatronic development.

The "plug-in" concept introduced by PAM 3.0

intacs[™] working group "HW Engineering Processes"

- In February 2018, the working group "Hardware Engineering Processes" was established.
- Goal: Develop an ISO/IEC 330xx-compliant PAM for electrical/electronic HW lifecycle processes as an extension proposal for Automotive SPICE[®] v3.1 in the context of the "plug-in concept"
- The HWE PAM/PRM v1.0 was published in November 2019.

DCOSC Excellence in Mechatronics BOSCH $\overline{000}$ Invented for life **Ontinental** Œ Э intacs™ DRÄXLMAIER Working Group NABCO Mobilizing Vehicle Intelligence "Hardware exida Valeo SIEMENS Engineering **Processes**" itk (infineon Sharpen360 **SCHAEFFLER** Lorit Consultancy KUGLER MAAG CIE cret

Lead: Dr. Pierre Metz

Constraints and drivers

- The HW PRM/PAM adopts the Capability Dimension of Automotive SPICE[®], without changes.
 Exception: Generic Resource indicators are not used.
- It includes rating rules and recommendations aligned to "Automotive SPICE[®] Guidelines".
- It covers electronic engineering only (no mechanical engineering).
- It includes many examples for the BP's implemented as non-normative notes.
- It includes a proper interface to sample manufacturing, and production.
- It satisfies both the perspective of semiconductor manufacturers, and controller device suppliers.
- It contains a detailed Key Concepts section, that includes methodological and technical rationales to explain all the most relevant decisions.
- It contains a very detailed mapping to ISO 26262:2018 (mostly, but not exclusively, to Part 5: Product development at the hardware level).
- It includes a significant list of change request proposals against Automotive SPICE[®] PRM/PAM v3.1 that should be considered while performing a HWE assessment.

The four HWE processes

Hardware Requirements Analysis

The purpose of the process is to transform the hardware-related system requirements, and hardware-related system architectural design, into a set of hardware requirements

Verification against Hardware Design

The purpose of the process is to ensure that the hardware is verified to provide evidence for compliance with the hardware design.

Requirements

Verification against Hardware

The purpose of the process is to

evidence for compliance with the

hardware is verified to provide

ensure that the complete

hardware requirements.

⁸ intacs[™] PRM/PAM Hardware Engineering (HWE)

The purpose of the process is to

provide an evaluated design, that is

suitable for manufacturing, and to

derive production-relevant data.

HWE.1 Hardware Requirements Analysis		
Base Practices	Rationales	
BP1: Specify hardware requirements	Nr. 3: Requirements Characteristics at CL1	
BP2: Structure hardware requirements	Nr. 4: No extra verification criteria BP (absorbed into BP1)	
BP3: Analyse hardware requirements		
BP4: Analyse the impact on the operating environment	Nr. 5: No usage of terms functional and non-functional	
BP5: Establish bidirectional traceability		
BP6: Ensure consistency		
BP7: Communicate agreed hardware requirements	New Work Products	
	17-HW01 Hardware requirements specification	

HWE.2 Hardware Design

Base Practices	Rationales	
BP1: Develop hardware architecture	Nr. 1: No production process	
BP2: Develop hardware detailed design	Nr. 6: One HW Design process (no separation	
BP3: Define interfaces of the hardware components	between HW Architectural Design and HW Detailled Design)	
BP4: Describe dynamic behavior	Nr. 7: No system HW process	
BP5: Allocate hardware requirements	Nr. 8: Mentioning of special characteristics	
BP6: Evaluate the hardware architecture and the	Nr. 9: Evaluate instead of verify	
hardware detailed design	Nr. 10: No BP on evaluating alternative architectures	
BP7: Communicate all information needed for	New Work Products	
production	04-HW01 Hardware architecture	
BP8: Establish bidirectional traceability	04-HW02 Hardware detailed design description	
BP9: Ensure consistency	04-HW03 Schematics	
BP10: Communicate the hardware architecture and	04-HW04 Bill of materials	
hardware detailed design	04-HW05 Layout	
	11-HW01 Hardware production data	

11-HW02 Special characteristics

HWE.3	Verification	against Ha	Irdware Design
-------	--------------	------------	----------------

Base Practices

BP1: Develop a strategy for the verification against hardware design

BP2: Develop specification for the verification against hardware design

- BP3: Ensure use of compliant samples
- **BP4: Select verification measures**
- BP5: Verify hardware design
- BP6: Establish bidirectional traceability
- BP7: Ensure consistency

BP8: Summarize and communicate results

Rationales

Nr. 11: ISO 26262 Evaluation of HW Elements is not an alternative for HWE.3 and HWE.4

Nr. 12: HW Integration

Nr. 13: Choice of the term 'Verification' for right-hand side HWE Processes

Nr. 14: ISO 26262-8 Verification Planning vs. HWE PRM Outcome 'Strategy'

Nr. 15: ISO 26262 Evaluation of HW Elements

New Work Products

08-HW01 Verification plan08-HW02 Verification specification13-HW01 Verification result

HWE.4 Verification against Hardware Requirements			
Base Practices	Rationales		
BP1: Develop a strategy for the verification against hardware requirements	Same rationales as HWE.3		
BP2: Develop specification for the verification against hardware requirements			
BP3: Ensure use of compliant samples			
BP4: Select verification measures			
BP5: Verify hardwareBP6: Establish bidirectional traceabilityBP7: Ensure consistencyBP8: Summarize and communicate results	New Work Products		
	08-HW01 Verification plan		
	08-HW02 Verification specification		
	13-HW01 Verification result		

Traceability and consistency

International Assessor Certification Scheme^T

13 intacs[™] PRM/PAM Hardware Engineering (HWE)

Planned targets for 2020

- 1. Release official syllabus / training material
- 2. Obtain official regulation from intacs board, needed for performing and logging formal assessments
- 3. Review change requests for the PRM/PAM Hardware Engineering (HWE) v1.0
- 4. Explore on specific semiconductor related practices (including ISO 26262-11)
- 5. Depending on the status of the working group, check mappings to ISO SAE 21434 (cybersecurity)

Conclusions

- 1. The PRM/PAM Hardware Engineering (HWE) has filled one of the biggest gaps of current Automotive SPICE[®], especially regarding the alignment and convergence with ISO 26262 and, more implicitly, with IATF 16949, too.
- 2. Given the degree of maturity of the PRM/PAM Hardware Engineering (HWE) it is recommended to begin familiarizing with it, in order to be ready for official assessments as soon as intacs board releases the respective official regulation.

