
©
 2

00
8

T
he

 M
at

hW
or

ks
, I

nc
.

® ®

Towards Certification

Paolo Bizzarri

TheMathWorks

Italy

2

® ®

High-Integrity Applications

Definition: cf. Buncefield Investigation Glossary

http://www.buncefieldinvestigation.gov.uk/glossary.htm

Software-based systems

that are designed and

maintained so that they

have a high probability

of carrying out their

intended function

3

® ®

4

® ®

Standards Landscape

� Aerospace Standards
� DO-178B (= JAA EUROCAE ED-12B)

� DO-254

� Generic Standards
� IEC 61508* (= EN 61508)

� Automotive Standards / Guidelines
� ISO 26262

� MISRA-C

� MAAB Guidelines

* Used e.g. in automotive and industrial automation

5

® ®

Generic safety standard

Derivative standards

IEC 61508 Derivative Standards

IEC 61508
1998-2000

ISO/CD 26262
2008

EN 5012x

IEC 61511

IEC 61513

IEC 60601

ISO/DIS 26262
2009

�

�

6

® ®

Development Process for High-Integrity
Applications: System Certification
� Recognition by a certification authority (e.g. TÜV) that an in-vehicle

system complies with the requirements of a standard

Partitioning Integration

Module design

Validation testing

Integration testing
(components, subsystems)

Coding

Integration testing
(modules)

System certification

Module testing

SW safety req. spec

SW architecture

SW system design

7

® ®

IEC Certification Kit (for IEC 61508 and ISO 26262)

� Provides certification artifacts, including:
� TÜV SÜD certificates
� TÜV SÜD certificate reports
� Verification and validation workflow

documentation and guidance

� Support includes the following tools:
� Real-Time Workshop Embedded Coder

(R2008a, R2008b, R2009a, R2009b)
� PolySpace Verifier for C (R2007a+)
� PolySpace Client / Server for C/C++

(R2008a, R2008b, R2009a, R2009b)

www.mathworks.com/products/iec-61508/

Note: Real-Time Workshop Embedded Coder and PolySpace products for C/C++
were not developed using certified processes.

8

® ®

Workflow for Verification and Validation
of Models and Generated Code

9

® ®

Verification & Validation at the Model
Level

� Goal of design verification is to gain confidence in the
model, which is used for production code generation

� Following IEC 61508-3, the design verification part of the
reference workflow comprises a combination of
� Reviews & static analyses, and

� comprehensive functional testing activities at the model level

10

® ®

Review and Static Analysis

� Model components considered as modules should be
reviewed

� If feasible, manual model reviews should be supported by
automated static analyses of the model

� Modeling guidelines should be used, and adherence with
the guidelines should to be assessed

11

® ®

Module and Integration Testing

� Model components should be functionally tested using
systematically derived test vectors.

� Objective of module testing is
� demonstrate that each model component performs its intended

function and does not perform any unintended functions

� As module testing is completed, module integration testing
should be performed with predefined test vectors
� model integration stages should be tested in accordance with the

specified integration tests.

� Tests should show that all model modules and model subsystems
interact correctly to perform their intended function and do not
perform unintended functions.

12

® ®

Verification & Validation at Code Level

� The workflow uses
� translation validation through systematic testing

� to demonstrate that the execution semantics of the model is being
preserved during code generation, compilation, and linking

� Numerical Equivalence Testing
� Equivalence Test Vector Generation

� Equivalence Test Execution

� Signal Comparison

13

® ®

Equivalence testing of individual and
integrated modules

� Equivalence testing between model
and resulting object code constitutes
a core part of the code verification
workflow

� comparative testing or

� back-to-back testing

� If the coverage is not sufficient,
additional test vectors
should be created.

� If full coverage cannot be achieved,
uncovered parts should be assessed
and justification for uncovered parts
provided.

14

® ®

Prevention of unintended Functionality

� Model versus Code Coverage Comparison
� structural coverage metrics should be used on the model and code

level respectively

� decision coverage at the model level and branch coverage (C1) at
the code level can be used in combination

� Discrepancies between model and code coverage shall be
assessed.

� If the code coverage achieved is less than the model coverage,
unintended functionality could have been introduced

15

® ®

Prevention of unintended Functionality

� Traceability Review

� Traceability analysis of the generated C source ensures that all
parts of this code can be traced back to the model used for
production code generation

� The generated code is subjected to a limited review that
exclusively focuses on traceability aspects

� Non-traceable code shall be assessed

16

® ®

WORKFLOW DEMO DETAILS

17

® ®

Example IEC 61508 Workflow for Model-
Based Design with MathWorks Products

PIL testing using Embedded IDE Links

Real-Time Workshop Embedded
Coder traceability report or
Model vs. code coverage comparison

Simulation (model testing),
Model coverage, RMI

Model Advisor, Modeling
standards checking

Simulink / Stateflow / Simulink Fixed Point Real-Time Workshop Embedded Coder

18

® ®

The MathWorks

Change the world by

Accelerating the pace
of discovery, innovation, development, and learning

in engineering and science

