

MATLAB & SIMULINK

Towards Certification

Paolo Bizzarri

TheMathWorks

Italy

MATLAB&SIMULINK®

High-Integrity Applications

Software-based systems that are designed and maintained so that they have a high probability of carrying out their intended function

Definition: cf. Buncefield Investigation Glossary http://www.buncefieldinvestigation.gov.uk/glossary.htm

MATLAB[®] SIMULINK[®]

- O X

test_fuelsys_pb_DPRC* e Edit View Simulation Format Tools Help

🗅 😂 🖬 🚳 😓 수 수 수 요 오 🕨 = 100 Normal 💽 🔛 🖽 🕲 🕸 🖽 🐌 🔯 📾 🍕

Fault-Tolerant Fuel Control System

MATLAB[®] & SIMULINK[®]

Standards Landscape

- Aerospace Standards
 - DO-178B (= JAA EUROCAE ED-12B)
 - DO-254
- Generic Standards
 - IEC 61508* (= EN 61508)
- Automotive Standards / Guidelines
 - ISO 26262
 - MISRA-C
 - MAAB Guidelines

	NORME INTERNATIONALE	CEI IEC
	INTERNATIONAL STANDARD	61508-3 Promière dditon Fist edition 1938 12
	Sécurité fonctionnelle des systèmes électriques/ électroniques/électroniques programmables relatifs à la sécurité – Partie 3: Prescriptions concernant les logiciels	
	Functional safety of electrical/electronic/programmable electronic safety-related systems –	
	Part 3: Software requirements	
	IEC	Numéro de référence Reference sumbor CEINEC 61504-3 1983

MATLAB[®] SIMULINK[®]

IEC 61508 Derivative Standards

IEC ... International Electrotechnical Commission

ISO ... International Organization for Standardization

Development Process for High-Integrity Applications: System Certification

 Recognition by a certification authority (e.g. TÜV) that an in-vehicle system complies with the requirements of a standard

IEC Certification Kit (for IEC 61508 and ISO 26262)

Provides certification artifacts, including:

- TÜV SÜD certificates
- TÜV SÜD certificate reports
- Verification and validation workflow documentation and guidance

Support includes the following tools:

- Real-Time Workshop Embedded Coder (R2008a, R2008b, R2009a, R2009b)
- PolySpace Verifier for C (R2007a+)
- PolySpace Client / Server for C/C++ (R2008a, R2008b, R2009a, R2009b)

www.mathworks.com/products/iec-61508/

MATLAB® & SIMULINK®

Workflow for Verification and Validation of Models and Generated Code

Verification & Validation at the Model Level

- Goal of design verification is to gain confidence in the model, which is used for production code generation
- Following IEC 61508-3, the design verification part of the reference workflow comprises a combination of
 - Reviews & static analyses, and
 - comprehensive functional testing activities at the model level

Review and Static Analysis

- Model components considered as modules should be reviewed
- If feasible, manual model reviews should be supported by automated static analyses of the model
- Modeling guidelines should be used, and adherence with the guidelines should to be assessed

Module and Integration Testing

- Model components should be functionally tested using systematically derived test vectors.
- Objective of module testing is
 - demonstrate that each model component performs its intended function and does not perform any unintended functions
- As module testing is completed, module integration testing should be performed with predefined test vectors
 - model integration stages should be tested in accordance with the specified integration tests.
 - Tests should show that all model modules and model subsystems interact correctly to perform their intended function and do not perform unintended functions.

Verification & Validation at Code Level

- The workflow uses
 - translation validation through systematic testing
 - to demonstrate that the execution semantics of the model is being preserved during code generation, compilation, and linking
- Numerical Equivalence Testing
 - Equivalence Test Vector Generation
 - Equivalence Test Execution
 - Signal Comparison

MATLAB® SIMULINK®

Equivalence testing of individual and integrated modules

- Equivalence testing between model and resulting object code constitutes a core part of the code verification workflow
 - comparative testing or
 - back-to-back testing

A The MathWorks

- If the coverage is not sufficient, additional test vectors should be created.
- If full coverage cannot be achieved, uncovered parts should be assessed and justification for uncovered parts provided.

Prevention of unintended Functionality

- Model versus Code Coverage Comparison
 - structural coverage metrics should be used on the model and code level respectively
 - decision coverage at the model level and branch coverage (C1) at the code level can be used in combination
 - Discrepancies between model and code coverage shall be assessed.
 - If the code coverage achieved is less than the model coverage, unintended functionality could have been introduced

Prevention of unintended Functionality

- Traceability Review
 - Traceability analysis of the generated C source ensures that all parts of this code can be traced back to the model used for production code generation
 - The generated code is subjected to a limited review that exclusively focuses on traceability aspects
 - Non-traceable code shall be assessed

WORKFLOW DEMO DETAILS

Fault-Tolerant Fuel Control System with Microsoft(R) Word Requirements

MATLAB&SIMULINK®

Example IEC 61508 Workflow for Model-Based Design with MathWorks Products

MATLAB[®] & SIMULINK[®]

The MathWorks

Accelerating the pace

of discovery, innovation, development, and learning

in engineering and science