



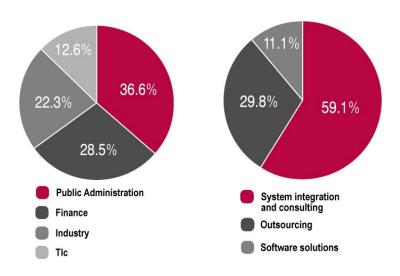
7° Automotive SPIN Italy Workshop

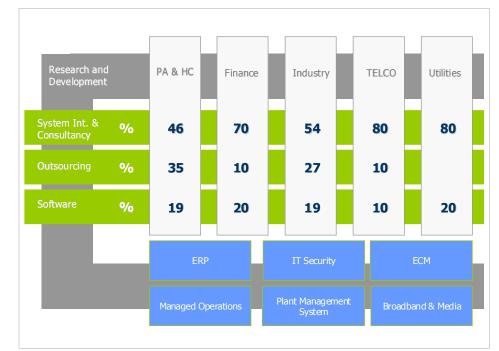
Pisa, May 21st 2010

# COSMIC

# A new method for measuring software functional size

Luigi Buglione, Ph.D. Process Improvement & Measurement Specialist Industry Business Unit Engineering.IT





#### Engineering



#### \_ The first Italian ICT player

- \_ more than 730 M/€ revenues
- \_ 1000 clients
- \_ 6,300 IT specialists





www.eng.it







✓ G1. Present the COSMIC FSM method and principles

✓ G2. Discuss main changes/improvements against the so-called 1°-generation FSM methods

 $\checkmark G3$ . Show possible scenarios for applicability of COSMIC Function Points (CFP) in the Automotive sector





Automotive SPIN Italia – Pisa, May 21, 2010 – © 2010 L.Buglione





#### Introduction

- How requirements can be perceived
- A bit of humour...

#### • Functional Size Measurement (FSM) Methods

- History: the first 30 years
- The 'productivity paradox'
- 1<sup>st</sup> generation FSM methods

#### COSMIC

- Origins & Evolution
- Reference documents
- Scope of Application
- General Concepts
- Counting Principles
- Case Study: the Rice Cooker
- Benchmarking data
- Conversions with other FSMM
- Conclusions & Prospects
- Q & A



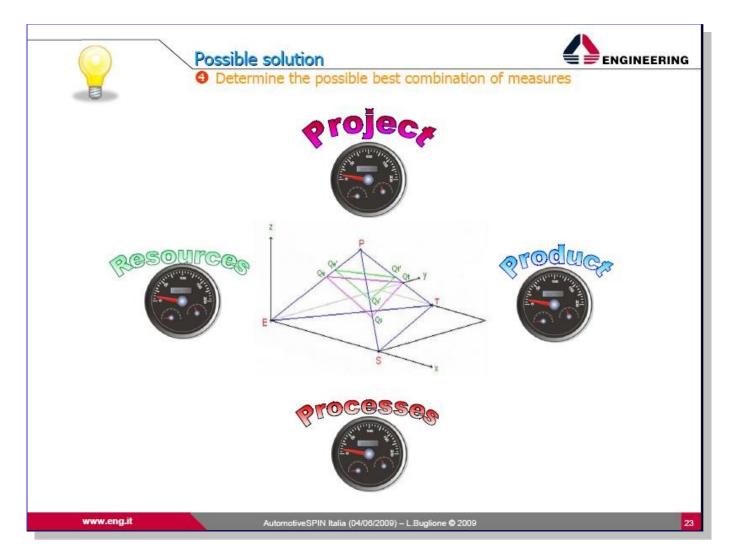




#### One year ago...








5

Automotive SPIN Italia - Pisa, May 21, 2010 - © 2010 L.Buglione









Automotive SPIN Italia – Pisa, May 21, 2010 – © 2010 L.Buglione





ENGINEERING



Possible Solution

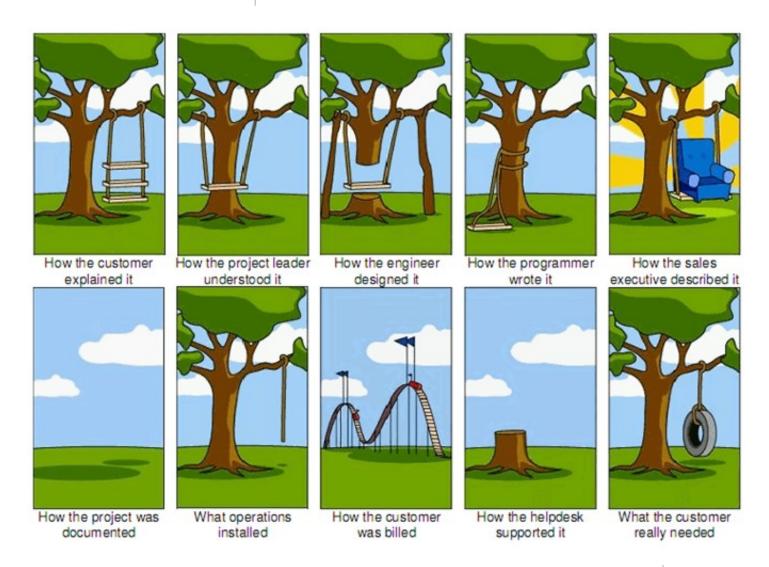
Obtermine the list of most representative measures (1)

| Entity   | Attribute            | Measure                                                                                                                  | Threshold                   | A-SPICE        |
|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| Project  | Planning compliance  | Effort (man/hrs) per SLC phase, per iteration (abs,<br>%)                                                                | (profiles on<br>hist.data)  | MAN.3          |
| Resource | Time                 | % of open complaints / notes for delaying in<br>providing the agreed furnitures (tracked) per<br>contract                |                             | ACQ.4          |
| Process* | Time performance     | SPI (Schedule Performance Index)                                                                                         | ongoing                     | MAN.3          |
| Process* | Cost performance     | CPI (Cost Performance Index)                                                                                             | ongoing                     | MAN.3          |
| Process  | QA performance       | % of non-conformances still open                                                                                         | ≤15%                        | SUP.1          |
| Process* | Maturity             | Problem Reports (PR) by status (open, closed)                                                                            | (profiles on<br>hist.data)  | SUP.9          |
| Process  | Changeability        | Avg Change Requests (CR) working time by status                                                                          | (profiles on<br>hist.data)  | SUP.8 - SUP.10 |
| Process* | Planning reliability | Requirements Volatility of 'Scope Creep' Index (#<br>of modified/new UR not formally traced / tot. # UR)<br>by iteration |                             | ENG.4          |
| Product* | Code Length          | Kilo Lines of Code (KLOC) [system, function,<br>module] c.a 5 functions per module                                       | (abs, 100-150,<br>700-1000) | ENG.4          |
| Product* | Functional Size      | Functional Size (fsu) [system]                                                                                           | (abs)                       | ENG.4          |

www.eng.it

AutomotiveSPIN Italia (04/06/2009) - L.Buglione © 2009

20



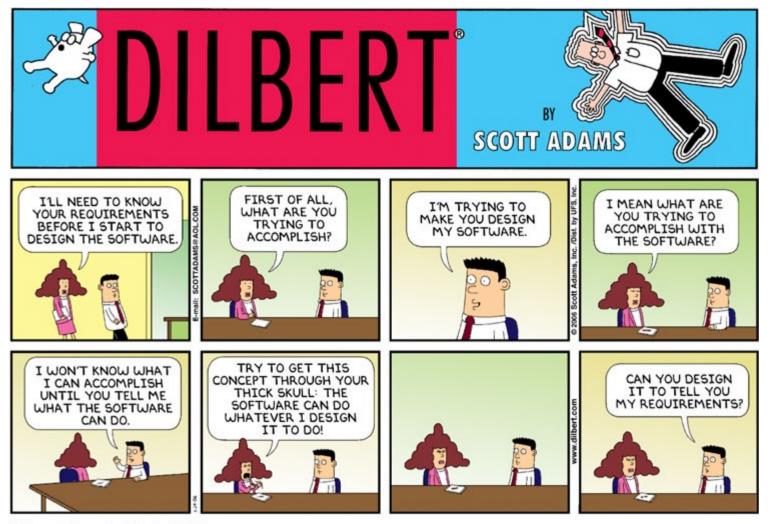



#### Introduction

#### How requirements can be perceived...









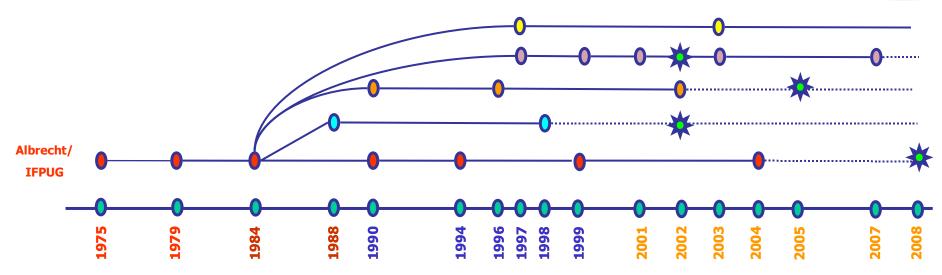

#### Introduction

**Dilbert on Requirements...** 





© Scott Adams, Inc./Dist. by UFS, Inc.






#### **FSM Methods**

**History: First 30 years** 





- COSMIC-FFP (ISO/IEC 19761:2003): v2.1 (2002), first FSM method (2°generation) standardized by ISO
- ✓ **IFPUG FPA** (ISO/IEC **20926:2009**): v4.3 (2009), it explicitly excludes VAF
- ✓ **UKSMA MarkII FP** (ISO/IEC **20968:2002**): v1.3.1 (1998), it explicitly excludes corrective factors
- NESMA FPA (ISO/IEC 24570:2005): update of the Dutch v2.0 (1998) up to v2.1, mostly devoted to enhancement projects
- ✓ FISMA FPA (ISO/IEC 29881:2008): the v1.1 Finnish method, including some BFC (Base Functional Components) different than other FSM methods

Each method has its own CPM (*Counting Practice Manual*) or MM (*Measurement Manual*) with details about "how" counting the *points.* 









|                                            | Assembler<br>version | Ada<br>version | Difference |
|--------------------------------------------|----------------------|----------------|------------|
| Source code size                           | 100.000              | 25.000         | -75.000    |
| Activity in PM:                            |                      |                |            |
| <ul> <li>requirements</li> </ul>           | 10                   | 10             | 0          |
| • design                                   | 25                   | 25             | 0          |
| <ul> <li>coding</li> </ul>                 | 100                  | 20             | -80        |
| <ul> <li>documentation</li> </ul>          | 15                   | 15             | 0          |
| <ul> <li>integration &amp; test</li> </ul> | 25                   | 15             | -10        |
| <ul> <li>management</li> </ul>             | 25                   | 15             | -10        |
| Total Effort                               | 200                  | 100            | -100       |
| Total Cost                                 | \$1.000.000          | \$500.000      | -\$500.000 |
| Cost per line                              | \$10                 | <b>\$20</b>    | +10\$      |
| Lines per month                            | 500                  | 250            | -250       |





|                                            | Assembler<br>version | Ada<br>version   | Difference |
|--------------------------------------------|----------------------|------------------|------------|
| FP                                         | 300                  | 300              | 0          |
| Activity in PM:                            |                      |                  |            |
| <ul> <li>requirements</li> </ul>           | 10                   | 10               | 0          |
| • design                                   | 25                   | 25               | 0          |
| <ul> <li>coding</li> </ul>                 | 100                  | 20               | -80        |
| <ul> <li>documentation</li> </ul>          | 15                   | 15               | 0          |
| <ul> <li>integration &amp; test</li> </ul> | 25                   | 15               | -10        |
| <ul> <li>management</li> </ul>             | 25                   | 15               | -10        |
| Total Effort                               | 200                  | 100              | -100       |
| Total Cost                                 | \$1,000,000          | <b>\$500,000</b> | -\$500,000 |
| Cost per FP                                | \$3.333              | <b>\$1.666</b>   | -\$1.667   |
| FP per month                               | 1.5                  | 3.0              | 1.5        |



**F**SMA



The International association managing since 1986 updates of Albrecht's FPA counting rules is the International Function Point Users Group (IFPUG), composed worldwide from 700+ members – www.ifpug.org



## Some active SMAs:

- ✓ **GUFPI-ISMA** (Gruppo Utenti Function Point Italia Italian Software Metrics Association)
- UKSMA (UK Software Metrics Association) UKSMA
- NESMA (Netherlands Software Metrics Association)
- ✓ **FISMA** (Finnish Software Measurement Association)
- DASMA (Deutschsprachige Anwendergruppe f
  ür Software-Metrik und Aufwandsch
  ätzung)
- ✓ QESP (Quantitative Enterprise Software Performance, ex ASMA)





www.eng.it

DESP





## Which ones?

✓ FSM methods having in their counting scope the solely application layer

# Limits and Scope of Applicability

- ✓ <u>Application domains</u>: IFPUG FPA not particularly feasible to non-MIS software (e.g. real-time apps, embedded software, etc.)
- ✓ <u>Scope</u>: Software system seen only at the *application layer* level
- ✓ <u>Viewpoint</u>: The *end user* one
- Weighting system: 1°gen- FSM methods use a weighting system for their BFCs, based on a project sample (typically not so huge)
- <u>Possible consequences</u>: not performant usage of fsu for building effort and cost estimation models

# **Possible solutions**

 Create a new FSMM, aligned with ISO/IEC 14143-x series rules and criteria, with the goal to overcome the above mentioned limits









# • Origins

# Main Evolutions:

- ♦ Full Function Points (FFP, UQAM, 1997)  $\rightarrow$  v1.0
- ♦ COSMIC-FFP (1999) → v2.0
- ♦ COSMIC (2007) → v3.0

✓ **COSMICON**: Common Software Measurement Initiative Consortium

- Voluntary initiative born in 1998
- Documents and rules always in the publicly available
- COSMIC (v2.2) become an ISO standard yet in 2003 (ISO/IEC 19761)
- Currently it has Board Members from Europe, North America, Asia and Australia
- URL: www.cosmicon.com

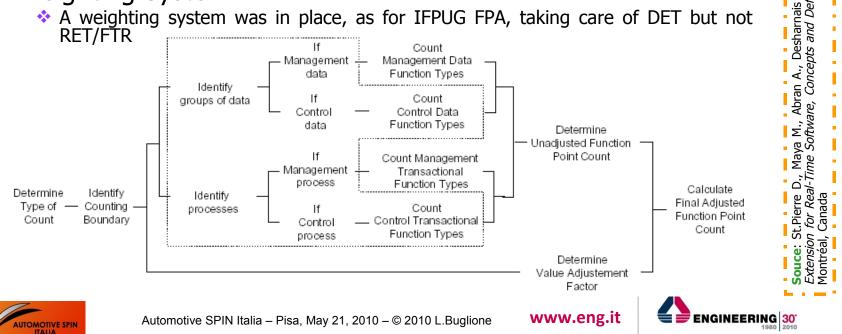






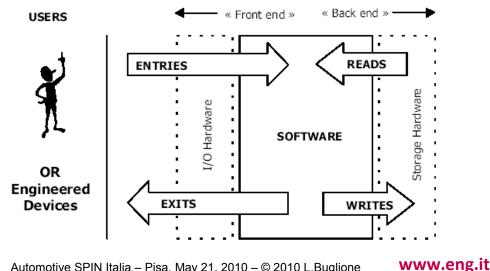
Report

Ful


nitions, Σ

# v1.0 – FPA Extension for R/T software

- Modify IFPUG counting rules, distinguishing:
  - \* Management Types  $\rightarrow$  to be counted according IFPUG rules
  - $\diamond$  Control Types  $\rightarrow$  to be counted according new FFP rules and to be added to the other *points*


## ✓ BFC:

- Control Data Types (UCG Updated Control Group; RCG Read-only Control Group)
- Control Transactional Data Types (ECE External Control Entry, ECX External Control eXit, ICR – Internal Control Read, ICW – Internal Control Write)
- Weighting System:
  - \* A weighting system was in place, as for IFPUG FPA, taking care of DET but not **RET/FTR**



# v2.0 – method 'per-se'

- Main changes from FFP v1.0:
  - \* No more differences between Management and Control Types,  $\rightarrow$  'data movement'
  - Two macro-phases: Mapping and Measurement
  - Introduced the 'layer' and 'viewpoint concepts'
  - Convertibility from/to other FSMM (included FFP v1.0 and IFPUG FPA v4.1)
- BFC:
  - Possible 'data movements': E Entry, X eXit, R Read, W –Write
- Weighting System:
  - Deleted the weighting system
  - Each 'movement' counts 1 cfsu (COSMIC functional size unit)

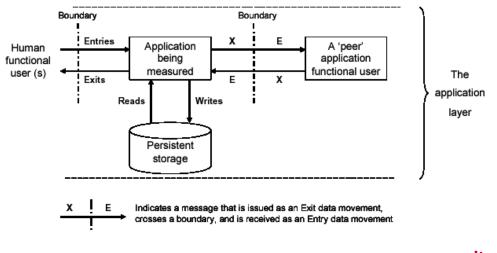






COSMIC-FFI

Symons C.,


## • v3.0 – Refining the method

- ✓ Main changes from COSMIC-FFP:
  - Three macro-phases: Measurement Strategy, Mapping and Measurement
  - Granularity level in the counting
  - Clear distinction between 'principles' and 'rules'
  - \* Maggiore e migliore strutturazione del dataset di documenti e guide
  - Series of Guidelines (GL) per application domain
  - Possibility of Local extensions

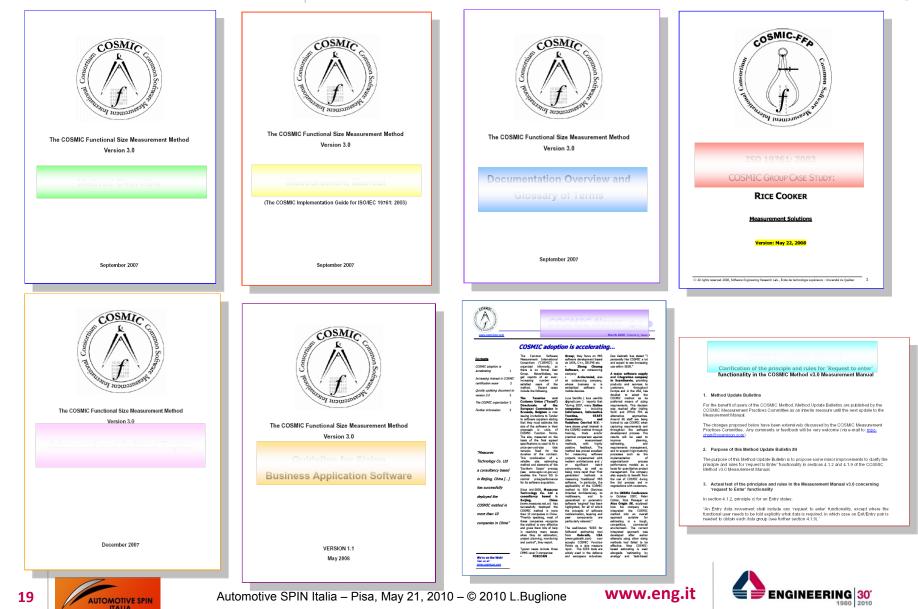
#### ✓ BFC:

- E Entry, X eXit, R Read, W –Write
- Size Unit:

Change of name from cfsu to CFP (COSMIC Function Point)






SMIC.





#### **Reference Documents**







# Applicability

- ✓ COSMIC can be adopted for calculating the functional size of a software
- ✓ It is valid both for the "business" than the "real-time" domains
  - Nei sistemi business si considerano in più quegli aspetti
  - Nel real-time si catturano quindi anche tutti gli eventi di controllo/attivazione
- Available guidelines (GL) for sizing...
  - Business Application Software (BAS), v1.1 (2008)
  - Datawarehouse (2009)
  - Real-time (2010)
  - SOA (2010)

# Non-Applicability

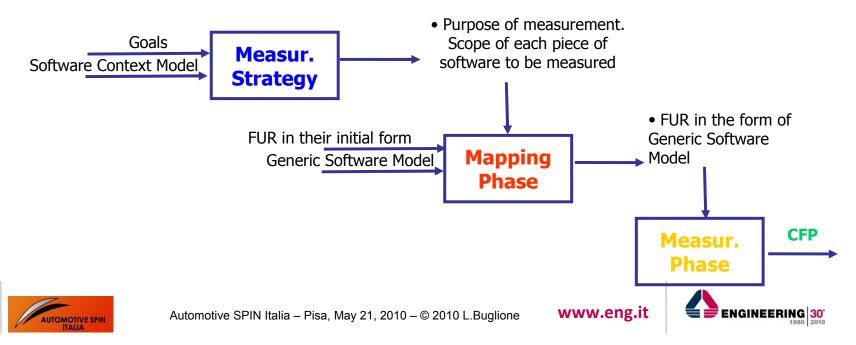
✓ COSMIC is not viable for other types of software...

- …mathematical-algorithmic
- …managing business rules
- …expert and forecasting systems (e.g.weather report systems)
- …computer games



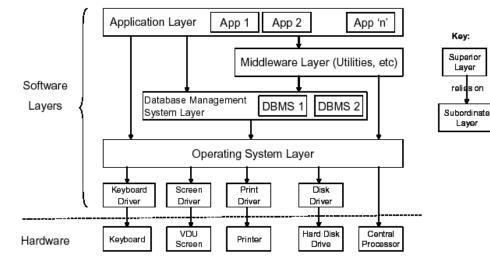


www.eng.it

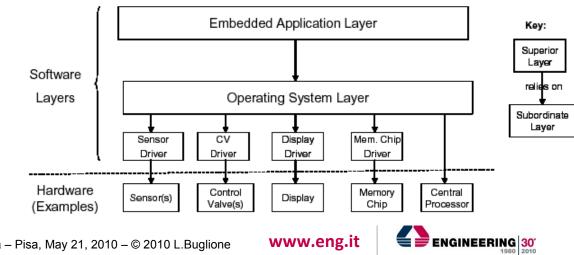



Complex



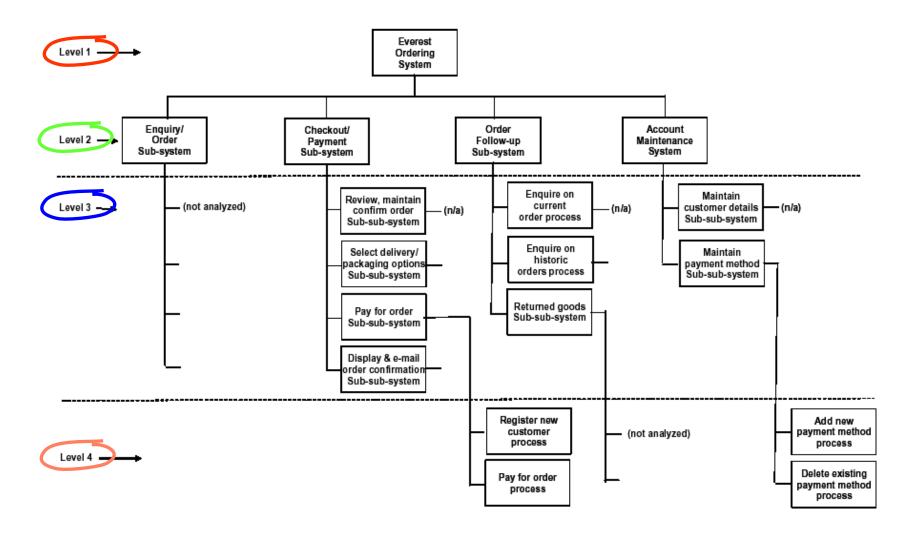

## • COSMIC is a 2° generation FSM method

- ✤ 4 BFC, no weighting system, each data movement counts as 1 CFP
- 3 macro-phases: Measurement Strategy, Mapping and Measurement
- Software Models:
  - ✓ Software Context Model  $\rightarrow$  representation of the software system to measure
  - ✓ Generic Software Model → generic representation with the 4 data movement (E, X, R, W)
- User: not only end-users, but also different viewpoints (with different views on software)
- Layer: porzione risultante dalla divisione funzionale dell'architettura software (hw/sw)
- Granularity level: each functional process can be decomposed into sub-processes




#### **General Concepts: Layers**





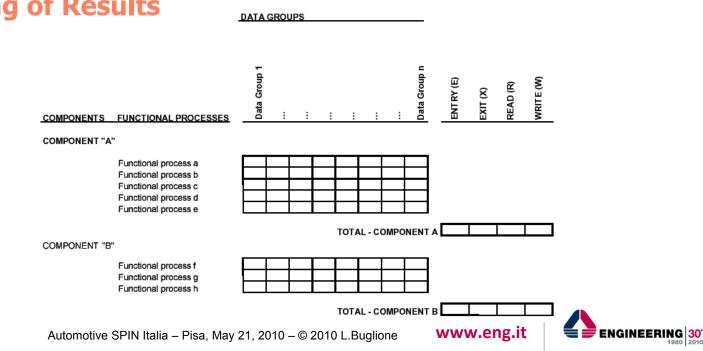

#### Architettura sistema business/MIS Architettura sistema R/T embedded







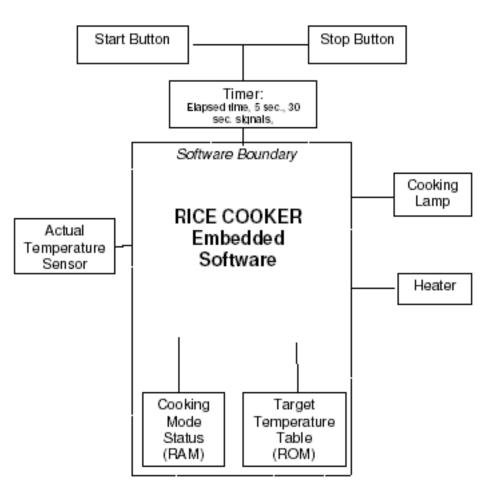









## • Counting principles


- Each data movement (E, X, R, W) creates 1 CFP
- Functional size of a functional process = sum of frequencies of its BFCs
- ✓ COSMIC Function Points (CFP) own the additive property
  - Functional size of a software = sum of the size of its functional processes derived from FURs, according to what established in the Measurement Strategy phase
  - Functional size of a modified software system = sum of the sizes for added, changed and deleted data movements



## • Reporting of Results

Case Study: Rice Cooker (v3.0)











| No. | Funct.<br>Process            | Triggering<br>Event    | Data Movement<br>Description                                                                                                      | Data Group                                                                                     | DM<br>Type       | CFP         | CFP |
|-----|------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|-------------|-----|
| 1   | Select target<br>temperature | 30sec. Timer<br>Signal | Receive Triggering event<br>Read Cooking mode RAM<br>Receive Elapsed Time                                                         | 30sec. Timer Signal<br>Cooking mode<br>Elapsed time Signal                                     | E<br>R<br>E      | 1<br>1<br>1 | 5   |
|     |                              |                        | Read Temperature<br>relationship from ROM<br>Write target temperature                                                             | Temperature<br>relationships<br>Target temperature                                             | R<br>W           | 1<br>1      |     |
| 2   | Control<br>Heater            | 5sec. Timer<br>Signal  | Receive Triggering event<br>Receive Actual Temp. from<br>Sensor<br>Read Target temperature<br>Fissa il comando Calore<br>(On/Off) | 5sec. Timer Signal<br>Actual Temperature<br>Target Temperature<br>HeaterTurn On/off<br>command | E<br>E<br>R<br>X | 1<br>1<br>1 | 4   |
| 3   | Control<br>Cooking<br>Lamp   | Elapsed<br>Time Signal | Receive Triggering event<br>Send Cooking Lamp Command                                                                             | Elapsed time Signal<br>Cooking lamp turn<br>on/off command                                     | E<br>X           | 1<br>1      | 2   |
|     |                              |                        |                                                                                                                                   |                                                                                                |                  | Tot         | 11  |







<section-header><image><text><text><text><text><text><text><text><list-item><list-item><list-item><section-header><section-header><section-header><section-header><text><text><text><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- ✓ 5052 projects, measured with different methods:
  - **345** projects measured with COSMIC (+203% than in r10)

| Enh    | CFP   | Eff m/d | Prod | NewDev | CFP   | Eff m/d | Prod  |
|--------|-------|---------|------|--------|-------|---------|-------|
| Max    | 2003  | 5936.6  | 5.48 | Max    | 2090  | 5907    | 40.87 |
| Avg    | 170.1 | 548.9   | 0.72 | Avg    | 309.2 | 716.6   | 1.54  |
| Median | 95.0  | 319.3   | 0.30 | Median | 182.0 | 350.7   | 0.45  |
| Min    | 3     | 2       | 0.03 | Min    | 8     | 1       | 0.02  |



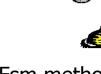
www.eng.it

ENGINEERING 30

# Motivations for conversions

 "Save" the value from application portfolio counts yet done with another Fsm method (e.g. IFPUG)

# Suggestions / Studies


- ✓ COSMIC "Advanced & Related Topics" v3.0, Chapter 3
  - Multiple 'native' count against n projects
  - Derive regression straight line/ curve from projects historical functional size data
  - Avoid to apply `as-is' formulas

| Author(s)                       | Data points | FP range | Formula                             | R <sup>2</sup> |
|---------------------------------|-------------|----------|-------------------------------------|----------------|
| Fetcke (1999)                   | 4           | 40-77    | $CFP = 1.1^*FP_{IFPUG} - 7.6$       | 0.97           |
| Vogelezang & Lesterhuis (2003)  | 11          | 39-1424  | $CFP = 1.2^*FP_{NESMA} - 87$        | 0.99           |
| Abran, Desharnais, Azziz (2005) | 6           | 103-1146 | $CFP = 0.84^*FP_{IFPUG} + 18$       | 0.91           |
| Desharnais & Abran (2006)       | 14          | 111-647  | $CFP = 1.0^*FP_{IFPUG} - 3$         | 0.93           |
| Van Heeringen (2007)            | 26          | 61-1422  | CFP = 1.22*FP <sub>NESMA</sub> - 64 | 0.97           |

## Counting exercises with multiple FSM methods

- Fetcke T., The Warehouse Software Portfolio, Report No.1999-20, University of Magdeburg, 1999
- Bundshuh M. & Dekkers C., The IT Measurement Compendium. Estimating and Benchmarking Success with Functional Size Measurement, Springer, 2008, ISBN 978-3-540-68187-8









#### **Renault France**

<u>Object of interest</u>: ECU (Electronic Control Units)

 $\checkmark$  Effort Estimations for sw development done in the past using IFPUG FPA method and COCOMO technique

- ✓ COCOMO was unsuccessful after a first experimentation
- ✓ IFPUG and COSMIC experimentation started in mid 2008
- ✓ ECU with a set of specifications under Matlab/Simulink tools with also textual requirements
- ✓ 9 modules under the expermentation, sized with both methods (IFPUG and COSMIC)

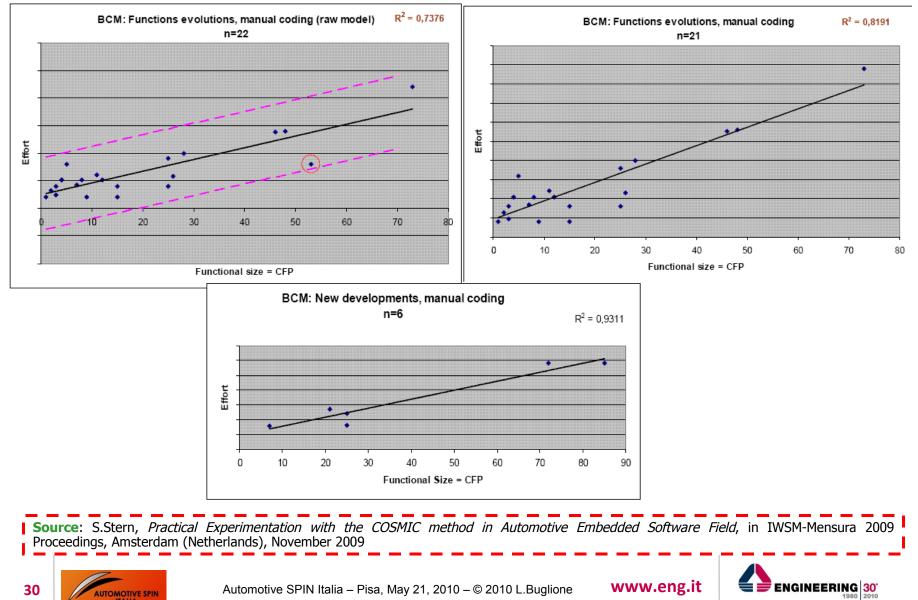
#### **First results**

- ✓ IFPUG UFP values always higher than COSMIC CFP
- ✓ COSMIC seemed to have a best fit with embedded software projects
- ✓ Easier counting rules with COSMIC
- ✓ As a consequence COSMIC used for a larger experimentation for embedded software projects
- The BCM (Body Control Module), with Statemate tool + textual requirements

#### Four goals

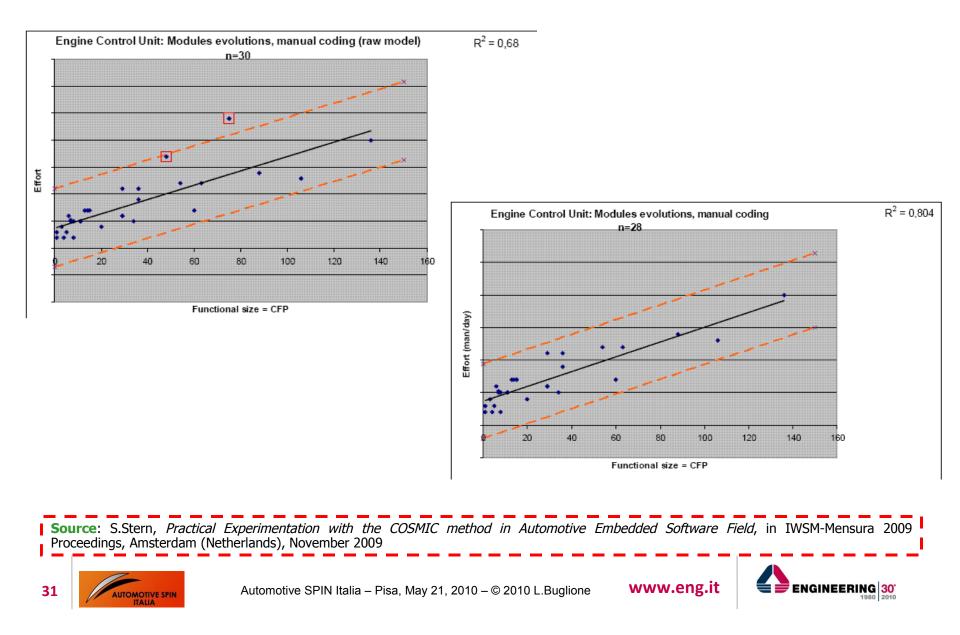
- To have indicators for managing suppliers productivity during time
- ✓ To predict software function development costs for better negotiating with suppliers

 $\checkmark$  To be able to estimate a function software development cost as soon as specifications are written and choose if implement or not such function


To benchmark productivity levels among different suppliers

Source: S.Stern, *Practical Experimentation with the COSMIC method in Automotive Embedded Software Field*, in IWSM-Mensura 2009 Proceedings, Amsterdam (Netherlands), November 2009










#### A case study in the Automotive Sector







#### • FSM Methods

- ✓ Born with the goal to provide more objectivity in sizing FUR for a software system
- ✓ The IFPUG method moved from the initial Albrecht's study and is nowadays the most diffused one after 30+ years (from 1979, when it was firstly presented)
- ✓ 2 generations of FSMM (with/without weighting systems; single-multi layer, etc.)
- ✓ Nowadays 5 FSMM are ISO/IEC standards, based on ISO 14143-x family
- ✓ Intrinsic characteristic: *fsu* measure the software product, not its project and only for its functional side

#### COSMIC

- ✓ Method born in 1997 with the goal to complement the IFPUG one for real-time projects, become a per-se method during the years, as a further option against other FSMM
- ✓ No weighting system, it counts only the frequencies of the 4data movements
- Good approximation when converting with other FSMM
- ✓ Worldwide diffusion on-going

#### Sizing & Estimation issues

- ✓ Each FSMM measures the product, not the project  $\rightarrow$  assumptions in estimates about NFR
- Complement the non-functional side for deployment
- Make distinction between 'nominal' and 'functional' productivity
- ✓ Cost/fsu: deal it with great care! → need for a clear definition of cost elements and its nature
- ✓ Continual (technical) benchmarking, based on BFC





Q & A





# Thanks for your attention! Grazie per la vostra attenzione!





Automotive SPIN Italia - Pisa, May 21, 2010 - © 2010 L.Buglione

#### Further readings...

## Misurare il software



Luigi Buglione

## Misurare il software

Quantità, qualità, standard e miglioramento di processo nell'Information & Communication Technology



Informatica & Organizzazioni

FrancoAngeli

# Misurare il software

## Quantità, qualità, standard e miglioramento di processo nell'Information & CommunicationTechnology

Franco Angeli, 2008 – 3ª edizione Collana: Informatica ed Organizzazioni pp. 380 -Volume 724.20 ISBN 978-88-464-9271-5

# Luigi Buglione

#### www.semq.eu/leng/booksms.htm

Parte dei proventi sono devoluti alla

FISM (Fondazione Italiana Sclerosi Multipla)



www.eng.it





34

# **Thanks for your Attention !**



#### We care of your problems and we have in mind a solution







