
It’s time for

real-time solutions

Methods and tool for the modeling and timing

analysis of embedded systems

• The development of automotive embedded systems: a

realistic flow with methods, models and standards

• Gaps and Points of friction in the integration of

heterogeneous models

• Interoperability of models: UML/SysML – AUTOSAR and

Simulink (SR)

• From functional models to task models: semantics

preservation issues, optimization opportunities

• The role of timing analysis in the development of

automotive systems

• Modeling time constraints and attributes: the MARTE profile

in SysML, opportunities and challenges in AUTOSAR

• Tool integration for timing analysis

• Keeping AUTOSAR models aligned for Simulation, timing

analysis and code generation

• The Magneti Marelli fuel injection case in INTERESTED

• Several applications (an example is fuel injection control) are

developed with the following characteristics:

• Very cost-sensitive
• Faster CPU often not an option, limited availability of memory

• Large number of functional subsystems (~200) interacting

exchanging several hundreds of communication signals

• System is multirate and characterized by tight timing constraints

• Utilization is very high (>90%) and mode changes are required

• Model-based design using Simulink (SR) models

• Need to plan transition to AUTOSAR-based development

• Need for:

• Supporting the design of the task and resource model starting

from system-level models to Simulink and AUTOSAR models
• Enforce semantics preservation (partial orders, comm flows)

• Optimize wrt performance metrics within timing constraints

• Algorithms that optimize memory use while enforcing deadlines
• Use of preemption thresholds

• Model and control mode changes

Functional design

System-level

Functional design

Component

model(s)

Behavioral model(s)

Architecture

selection

Architecture

model(s)

Function-to-Architecture

(deployment) model(s)

Module design

Coding
Task model(s)

Code implementation

UML/SysML

ADL

SR models

(Simulink)

separation between the

functional model and the

architecture model

AUTOSAR

4.0 ?

4.0 ?

Simulation of

system-level

control functions

Functional design

System-level

Functional design

Component

model(s)

Behavioral model(s)

Architecture

selection

Architecture

model(s)

Function-to-Architecture

(deployment) model(s)

Module design

Coding
Task model(s)

Code implementation

UML/SysML

ADL

SR models

(Simulink)

AUTOSAR

4.0 ?

4.0 ?

Lack of support for the

definition of the task and

resource model

Insufficient support for the

specification of timing

constraints and attributes

Insufficient support for the

guiding the definition of the

HW architecture and the

placement of components

Functional design

System-level

Functional design

Component

model(s)

Behavioral model(s)

Architecture

selection

Architecture

model(s)

Function-to-Architecture

(deployment) model(s)

Module design

Coding
Task model(s)

Code implementation

UML/SysML

ADL

SR models

(Simulink)

AUTOSAR

4.0 ?

4.0 ?

Issues of more integration

and consistency and

semantics preservation

User Requirements

Functional specs

Functional design

Architecture selection

Component/Module design

Coding

Integration testing

System verification

System validation

Module testing

Impact: reduction of timing faults,

simplified unit test

Impact: fill the gap at system-

level design

• SysML/MARTE

• Providing the definition of the (hardware) execution platform

• Adding an explicit task model

• Providing the definition of the mapping of the behavior

(functions/methods) to tasks

• Providing the mapping of signals into messages

• Providing the definition of the mapping of tasks into ECUs and

messages into buses

• Providing the semantics to timed events (far from ideal)

• Goals

• Define mapping/translation rules from/to AUTOSAR (largely

completed)

• Define mapping/translation rules to/from SR models

• Define mapping to time analysis viewpoint

A
U

T
O

S
A

R

S
W

-
C

1

SW-C

Description

Virtual Functional Bus

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-
C

1

ECU1

A
U

T
O

S
A

R

S
W

-
C

2

SW-C

Description

A
U

T
O

S
A

R

S
W

-
C

3

SW-C

Description

A
U

T
O

S
A

R

S
W

-
C

n

SW-C

Description

ECU

Descriptions

System

Constraint

Description

Deployment tools

Gateway

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-
C

2

ECU2

A
U

T
O

S
A

R

S
W

-
C

3

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-
C

n

ECU3

Runnable entities define the behavior of the components.

They are the smallest code-fragments that are provided by the
component and are (at least indirectly) a subject for scheduling by the
operating system. .

SW-Component 1

Runnable 1a

Runnable 1b

Runnable 1c

Runnable 1d

SW-Component 2

Runnable 2a

Runnable 2b

Runnable 2c

SW-Component 3

Runnable 3a

Runnable 3b

Task 1 Task 2

Task 3

Task 4

Task 5

Runnable 1a Runnable 1b Runnable 1c Runnable 1d

Runnable 2a Runnable 2b

Runnable 2c Runnable 3a

Runnable 3b

Runnable 2aRunnable 1a Task 6

*
*

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-
C

2

ECU2

• The activation model and the synchronization in the execution of

runnables (local and remote) is specified in a middle-level layer, the RTE

(Run-Time Environment), which is the runtime implementation of the VFB.

• The RTE layer is local to each ECU and responsible for triggering the

execution of runnables using the following events

1A 1B 1C

• Timing Event
(periodic execution).

• DataReceivedEvent
(reception on Sender/Receiver)

• OperationInvokedEvent
(invocation of Client/Server)

• DataSendCompleteEvent
(sending on Sender/Receiver)

• WaitPoint
(blocks a runnable waiting for an Event)

• Most tools for schedulability analysis assume availability

of the task model and require that each task is

characterized as being periodic or sporadic
• with a period or minimum interarrival Ti, a worst case exec.

time Ci, a deadline Di and possibly an activation offset Oi.

• However, in a model-based design flow such a task model

is typically not available or hidden inside the mechanisms

of the code generation tool, or produced late in the

development flow.

• In INTERESTED, the RT-Druid tool starts from the system

description at the functional level
• AUTOSAR component and runnables or

• SysML blocks - UML subsystems or composite objects or a

• Simulink subsystem.

• RT-Druid requires the definition of
• The communication, synchronization and activation model

of the functional blocks, including activation events,

precedence constraints and the definition of the data flows.

• In addition, each functional block is characterized by its

worst case execution time and its worst-case memory

requirement for stack space (this information is provided by

AbsInt’s AiT).

• The tool imports the functional description of the system

(from UML or AUTOSAR tools), and supports the user in
• the definition of the mapping of functional blocks to tasks,

• the assignment of priorities to tasks,

• the definition of preemption groups for allowing minimum use

of stack memory within the time constraints.

• the selection of the communication primitives

• and enforces preservation of semantics rules from functional

models

UML/MARTE is currently the only means to obtain a

description of the time constraints in the same context

of the objects/events to which they apply.

• The issues that need to be considered in this case are the

following (the AUTOSAR runnable is used as an example

of functional block):
• The assignment of runnables to tasks must be performed in

such a way that it is consistent with the definition of the

activation events.

• For example, a task with period Ti can only provide an

implementation to periodic runnables with period kTi, with an

activation semantics of type 1-every-k, or activated directly

with client-server semantics by a runnable with period Ti.

• The execution order of the runnables inside the task, the

priority, and possibly the activation offset assignment should

be defined in accordance with the order of execution

(precedence constraints) imposed on the runnables.

• The issues that need to be considered in this case are …
• The worst-case execution time of a task is obtained from the

execution times of the blocks mapped into it. This can be

trivial in some cases. However, execution patterns of type 1-

every-k may require modeling a task with multiple virtual

tasks or more sophisticated task models, such as the

multiframe model.

• The assignment of priorities and preemption thresholds can

be performed to minimize the memory required for the stack

space while satisfying the time constraints.

• The tool will also support the designer in the selection of the

communication mechanisms among blocks with a library of

possible options that include shared variables protected by

disabling preemption, priority ceiling semaphores or wait free

mechanisms and will also provide an estimate on cases when

preemption among blocks/runnables is impossible given the

current estimates of the WCETs.

Q: what is the best

runnable-to-task

mapping? Block A

E1 = 10 ms

Block B

Block C Proc D

Block E Proc F

E2 = 10 ms E3 = 20 ms

E4 = 20 ms

Run A Run E Run B Run F(*)

Proc D

Proc W

Proc C

Task 1 - 10 ms

Task 4 - 20 ms

Task 2 - 40 ms

Task 3 - 10 ms

Proc A Proc E Proc B

Proc D

Proc W

Proc C

Proc F

Run A

E1 = 10 ms

Block B

Block C Proc D

Block E Proc F

E2 = 10 ms E3 = 20 ms

E4 = 20 ms

Pro: No need to protect

communication between E

and F.

Cons: Less scheduling

flexibility, limited priority

inversion

Optimal Synthesis of Task and comm. Model

• The tool will also …

• estimate the memory required by the communication

variables given the selection of the communication

mechanisms.

• attempt at performing optimization on the selection of the

communication mechanisms.

• signal when preservation of the communication semantics

is guaranteed and when it is violated by the task

implementation.

• The tool not only provides the feasibility test and the worst case

response times of tasks and blocks, but also sensitivity analysis

results .

x2

x1

X space of design

optimization variables, such

as computation times,

periods, placement, priorities

…Schedulability of task i

Schedulability of task j

• In our flow, AUTOSAR models have three objectives:
• simulate the functional behavior,

• provide information to RTDruid for performing worst-case timing

analysis and,

• generate the code for the implementation of the communication and

synchronization on a given basic software. This code will have to

integrate with the code generated from Simulink models.

• The use of AUTOSAR for the purposes of modeling, simulation

and code generation has several issues,

• The situation can only partly benefit from the notion of time and

timed events as introduced in the latest (4.0) AUTOSAR release

• The timed event model is at best cumbersome if the purpose is,
• (for example) to build a common discrete time base the integration of

Simulink models.

• In addition, the use of timed events is currently not supported by

tools.

• In a fuel injection control system several functions are executed at a

given rotation angle of the engine shaft. A crankshaft position sensor

provides a reference sporadic hardware signal.

• This signal triggers a set of functions, typically mapped for execution

into a single task.

• In AUTOSAR, a sporadic signal of this type cannot be directly defined.

However, inside the application model, the runnables that are executed

in response to the crankshaft position signal need to be activated in

response to an RTE event, (this is the only legal way for a runnable to

be activated in AUTOSAR!).

• One possible solution is the following.

• A basic SW runnable interfaces the hardware signal coming from

the crankshaft position sensor to the application tasks.

• This BSW runnable writes into a send/receive port to forward to the

application the sensor position signal.

• The software components containing application runnables

activated in response to this signal will define a matching port.

Inside them, the runnables are defined to be activated on the event

of data received on the port.

• The basic SW component is the main variation point with respect to

the three model versions.

• For simulation, the BSW runnable is activated periodically by a

Counter/Alarm pair. Inside, it contains the simulation stub that

generates the stream of the crankshaft sensor signals.These

signals are represented by writes into the send/receive port on

which the application runnables are waiting.

• For code generation, the basic SW component is replaced by a

device driver that will explicitly call the RTE API function for writing

into the data port at the end of its execution.

• For worst case timing analysis, it is necessary to have information

about the worst-case arrival rate of the activation events for the

sporadic task into which all runnables are mapped. In AUTOSAR

4.0 this indication could come directly from a Timed Event triggering

information. In current AUTOSAR releases the sporadic rate must

be deduced from the rate of the writes into the corresponding data

port, which would require navigating the communication model

graph to the basic SW runnable and the corresponding Alarm

(which however, can only be periodic !)

• Project extension: development flow aimed at multicore

platforms

• Issues:
• Operating system support including memory protection,

multicore extensions to OSEK resources

• Time predictability against remote blocking on shared

resources.

• AUTOSAR support for multicore
• Definition of task placement and OS configuration

• Timing analysis on AUTOSAR models

• Extension of flow-preserving communication mechanisms

(Rate Transition blocks) to multicores

• The development of complex automotive applications in a

model-based flow must face the problem of integrating

heterogeneous models
• At the very least AUTOSAR and Simulink

• The connection is well supported for “code plumbing”, much

less for correct semantic integration

• The mapping of the functional model into the execution

platform model and the definition of the task model is still a

manual task

• Timing support in AUTOSAR (v 4.0) is still incomplete and

cumbersome
• Only developed for worst-case timing analysis, not simulation

• Lack of a formal timed event model

