Software Fault Injection
for Software Certification

Roberto Natella
Critiware s.r.l.

oth Automotive SPIN Italy Workshop
Milan, December 1, 2011

/ ‘ CRITIWARE sel
Innovating Critical Systems Engineering

/

Safety-critical software

" Unfortunately, it is practically impossible to guarantee that
software is defect-free
Complexity
Time-to-market constraints

" Many accidents due to “well-tested” software

THE LOSS OF EUROPE'S ARIANE 5 SUPER ROCKET

02221 GMT Aria
takes off fr om
Kourou
‘{ 82223 Solid fuel
o boosters separate
El 2224 Rocke lf iis
/Bﬂﬂ to achieve desired

height & dpd

Hé;'l « 2225 Self destruct

mechanism destroys

- N rocket

B Two sate Il tes
ﬁ lost at se
{u

sCIN Mageet base phmydmm 2

The Toyota software failure CRITIWARE srl

Innovating Critical Systems Engineering

" Due to a software defect, Toyota recalled almost half a million
new cars

®" The issue causes the unintended acceleration of the vehicle

" Numerous investigations have taken place (also by the NASA JPL
laboratory), but the causes of the problem are still unclear after
several months

Speed set point FEEL+FORCES ACTUATOR g ;
A peed selecticn

> Feel forces
ECU \‘ set point
application soﬁware);

actual speed

Engine control

Dealing with software faults

Rigorous development
practices and

processes to preye
defects Defect insertion

Y Y Y

Analysis |—» Design —»| Coding

—»| Testing

|
|
|
\ 4 \ 4 \4
_ Defect removal
Extensive V&V to

remove defects
(more and more
testina..)

CRITIWARE srl
n

navating Critical Systems Engineering

Assume that
residual defects do
exist, and design th
system to cope w/
them

Residual
defects
in the
released
product

A4

I
|
|

\4

Software Fault Tolerance I CRITIWARE sel.

Innovating Critical Systems Engineering

" Error detection and handling mechanisms cope with
residual defects by:

Masking software faults
" N-version programming, recovery blocks, ...

Detecting an incorrect state, in order to provide a fail-
stop behavior or a degraded mode of service

= Assertions, watchdog timers, time and space partitioning,
exception handling, ...

" They also require testing and debuqgging, and evidences
proving their effectiveness

Fault injection CRITIWARE sel

Innovating Critical Systems Engineering

" Fault Injection is the process of deliberately introducing
faults into a system to assess its behavior in the presence
of faults

L

Failures
Inputs » System
A
Faul tsw Fault tolerance

b
2 CRITIWARE srl

Innavating Critical Systems Engineering

Fault injection in the ISO/DIS
26262 safety standard

Table 15 — Methods for software integration testing

ASIL
Methods

A B C D
1a |Requirements-based test ok K ++ s
1b |External interface test ++ ++ ++ g
1c JFault injection test? : + + 3 ++
1d [Resource usage testP ¢ - - + ++
1e [Back-to-back test between model and code, if applicabled + + ++ ++

@ This includes injection of arbitrary faults in order to test safety mechanisms (e.g. by corrupting software or hardware

Components) T —————— = N N NN B BN NN BN BN EEE BN BN EEE BN BN B

b To ensure the fulfilment of requirements influenced by the hardware architectural design with sufficient tolerance,
properties such as average and maximum processor performance, minimum or maximum execution times, storage usage (e.g.
RAM for stack and heap, ROM for program and data) and the bandwidth of communication links (e.g. data busses) have to be
determined.

¢ Some aspects of the resource usage test can only by evaluated properly when the software integration tests are executed
on the target hardware or if the emulator for the target processor supports resource usage tests.

d This method requires a model that can simulate the functionality of the software components. Here, the model and code
are stimulated in the same way and results compared with each other.

Source: ISO/DIS 26262-6, “Product Development: software level”, 2009 (draft version)

Traditional hardware fault

CRITIWARE srl
i nj e Ct| on nnovating Critical Systems Engineering
Adaptation module o
Fault 77 | Faultinjector
injection e e I - fl
elements _ C as
] CPU E

Task 1 Task N

Hardware-implemented Software-implemented
fault injection fault injection
(e.g., pin-level injection) (e.g., bit-flipping)

Injection of software faults

0

RITIWARE srl

Innovating Critical Systems Engineering

= Software faults are more complex to emulate than hardware faults

" They are human mistakes occurring in the development process

static void tg3_read_mem(struct tg3 *tp, u32 off, u32 *val) {
unsigned long flags;

if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) &&

(off >= NIC_W && (off < NIC_SRAM_TX_BUFFER_DESC)) {
*val = 0;

return;
}

spin_lock_irgsave(&tp->indirect_lock, flags);

if (tp->tg3_flags & TG3_FLA%
pci_write_config_dword(tp->pdev, N _WIN_ _ADDR, off);
pci_read_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);

/* Always leave this as zero. */
pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);

}else {
tw32_f(TGEPCI_MEM_WIN_BASE_ADDR, off);
*val = tr32(FG3PCI_MEM_WIN_DATA);
/* Always leave this as zero. */
tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);

}
spin_unlock_irgrestore(&tp->indirect_lock, flags); 9

Characterization of
software faults

.
‘ CRITIWARE sl
Innovating Critical Systems Engineering

»

Tipo di guasto # Y%
Costrutto if con istruzioni 71 10.63%
Clausola AND usata in condizione di salto 47 7.04% uA |arge set of bug s in
Chiamata a funzione 46 6.89% . I d
Costrutto if attorno ad istruzioni 34 5.09% CO m m e rCI a an O p e n B
% Clausola OR usata in condizione di salto 32 4.79% Sou rce SOftware Was
5 Parte piccola e localizzata in un algoritmo 23 3.44% d h .
p Assegnazione di variabile con una espressione 21 3.14% use to C araCte rlze
Funzionalith 2l 3% software faults
Assegnazione di variabile con una costante 20 2.99%
Costrutto if con istruzioni ed else 18 2.69% s g
|
Inizializzazione di variabile 15 2.25% FaUItS Were ClaSSIfled aS
Espressione logica usata in condizione di salto 22 3.20% missin g, wrong, or
Modifiche estensive ad un algoritmo 20 2.99% t t t
g Assegnazione di variabile con una costante 16 2.40% eX ran eo u S CO nS ru C S
& Espressione aritmetica in parametro di funzione 14 2.10%
Tipo di dato o conversione 12 1.78% N Th em aJO rlty Of fau ItS
Variabile usata in parametro di funzione 11 1.65%
; (68%) belongs to a set of
1
Assegnazione di variabile con un’altra 9 1.35%
K few fault types

10

Totale 452 67.66%

SoftwAre Fault Emulation
(SAFE)

CRITIWARE srl

Innovating Critical Systems Engineering

Mutated source code

Target application
(in the form of “patch” files)

(source code)

if(a && b) Source if(a-&& b) if(a &&-B)
{ :> code Program { {

c=1; vei rewriting c=1 c=1
} analysis } }

< A if(a && b)

N </J' {
:2;
Fault types library @ }C

" An industrial-strength C/C++ parser (tested on the Linux kernel, MySQL, Apache,
...) automatically analyzes the source code, to identify “injectable” code locations

= “Patch files” are automatically generated, each introducing an individual fault

11

Workflow CRITIWARE srl

Innovating Critical Systems Engineering

¢ ./injection main.c 1. Several “patch” files are generated

$ 1s

injection main.ii OMIA O.patch main.ii OMVAE O.patch main.ii OWPFV_1.patch test.h

main.c main.ii OMIFS 0O.patch main.ii OMVIV_0O.patch main.o test.ii
main.ii main.ii OMLAC 0O.patch main.ii OMVIV_1.patch main.s test.o

main.ii OMFC _O.patch main.ii OMLAC 1.patch main.ii OMVIV_2.patch test test.s

main.ii OMFC_1l.patch main.ii OMLPA 0O.patch main.ii OWPFV_O0.patch test.c

$ cat main.ii OMVAE 0.patch

--- /home/pippo/Scrivania/test/main.c
+++ /home/pippo/Scrivania/test/main.c
@R -12,1 +12,1 Q@

- punt = &a;

+ punt = (punt);

$ patch -p0 < main.ii OMVAE 0.patch 2 A “patch” is applied to the software
patching file /home/pippo/Scrivania/test/main.c

S make

$./test

Segmentation fault (core dumped) 3. Test execution

12

Automation of Fault Injection

Tests

Software Fault | njection GUI

File About

 Create Fault] Compile Fault | Tests | Results

$FAULTYDIR |/home/matella/Scrivania/campaign-apache/faultydir E]

$SAVEDIR [/home/matella/Scrivania/campaigrrapache/savedir][:J

$TIMEOUT (in second) (30| B
$BINARY

Binary

/home/matella/Scrivania/campaign-apache/httpd-2.2.11/.libs/httpd

[Add Binary][Remove Binary]

Procedures

Startup | Handle Timeout | Clear Test Bed | Save Result | Run Test

20 # if [-e $KILL]

21 # then

22 # mv $KILL $RESULTDIR
23 # fi

24 #

25 # mv $STDIO $RESULTDIR

26 # mv $STDERR $RESULTDIR

27 #

28 # tar zcf <path log>/mylog.txt mylog.tar.gz
29 # mv <path _log>/mylog.tar.gz $RESULTDIR

B s

COMPILED PATCH
| Name

Type

Zr8L] COTe_UNMLPA_97.patcn
2782 [] core.i_OMLPA_98.patch
2783 [] core.i_OMLPA_99.patch
2784 [] core.i_OMLPA_9.patch
2785 [] core.i_OMVAE_0.patch
2786 [] core.i_ OMVAE_100.patch
2787 [] core.i_OMVAE_101.patch

| 2788 [core.i_OMVAE_102.patch

2789 [] core.i_OMVAE_103.patch
2790 [] core.i_OMVAE_104.patch
2791 [] core.i_OMVAE_105.patch
2792 [] core.i_OMVAE_106.patch
2793 [] core.i_ OMVAE_107.patch
2794 [] core.i_OMVAE_108.patch

NIA8 [T _rarn i AAMVUAC 100 nnbch

UNILPA
OMLPA
OMLPA
OMLPA
OMVAE
OMVAE
OMVAE
OMVAE
OMVAE
OMVAE
OMVAE
OMVAE
OMVAE
OMVAE

[alY. V7. -4

N\

>
 Eniiwans

" A huge number of tests
can be automatically
performed in few days

Deselect M] (

Update List

COMPILED PATCH | FILTER]

Start Tests

Size #
(KLoC) faults est
MySQL 232 39,53 ~3sec.
9
PostgreSQL 367 32,91 ~10
5 sec.
Apache 26 11,62 ~11
1 sec.

13

Applications in Software
Certification (1/2)

CRITIWARE srl

nnovating Critical Systems Engineering

"Verification&Validation of Software Fault
Tolerance mechanisms and algorithms
Testing and debugging
Evidence of their effectiveness

Software system . Other
(¢b) é ;
5 software
S
£ €—> Hardware
Watchdog

14

Applications in Software

.Q' D\ &
ificati) IWARE srl
Certification (2/2) = CRITIWARE sr

Innovating Critical Systems Engineering

" Validation of failure mode analysis (e.g., FMECA, Fault
Trees)

Software failure modes are not completely known and difficult to identify,
and they depend on the specific software component

Need to provide evidence that all likely failure modes have been covered
(e.g., by emulating real defects in software components)

[| | |
Software Incorrect | o)

stall service X 15

Case study G5 CRITIWARE sl

Innovating Critical Systems Engineering

" FIN.X-RTOS Is a real-time OS based on the Linux
kernel from Finmeccanica

= Aim of this project is to provide an OS compliant with
the guidelines of the DO-178B safety standard

Safety evidences will be used for certifying systems based on
FIN.X-RTOS

Level D requirements already fulfilled, level C is being
considered

16

OS robustness against faulty

. CRITIWARE srl
drivers

Innovating Critical Systems Engineering

Safety-critical system _ _
" Device drivers:

are bug-prone components (3
.. to 7 times buggier than other
Applications components)

run in supervisor mode

are tightly coupled through
APIls and shared data

= Software Fault Injection
adopted for evaluating if
faults can spread to the

F kernel
: :% Propagation to other kernel
D;Ie\ier Dr;\éer D;ie\lger components

Silent kernel data corruption

17

Test campaign ® CRITIWARE srl

Innovating Critical Systems Engineering

d. For each injectable fault: . Host machine

Generation of a “faulty driver” by
injecting the fault in the original driver

Installation and loading of the driver in]
the kernel Test VM
Execution of an user application
Data collection (error messages from
kernel/apps; register and memory SAFE
dumps)
| . tool Apps
D. Analysis of kernel failure modes
I
I
| RTOS
" Fault injection in 3 network device : |
drivers (ne2k-pci, rtl8139cp, pcnet32) G 5
serial port

= 150 injected faults per device driver

Test results (1/2)

150

140 " Classification of failure modes:
130
@ 120 Kernel oops
% 110
100
% o Hang (stall)
80 B ne2k-pci ' '
£ e Application errors
5 weesz ™ More than half of the failures
8 0 Impact on the kernel state
£ s (kernel oops and hangs)
= 20
13 1 : .
Kernel oops Hang Appl.errors Correct

elaboration

19

Test results (2/2) F8° C R TIWARE sl

Innovating Critical Systems Engineering

" Analysis of kernel error messages and register/memory
dumps:

46/51 error messages denote a failure within the
device driver

" These failures can be tolerated by unloading the driver, releasing
its resources (locks, memory), and reloading the driver

5/51 error messages denote a failure in other kernel
components

" Errors propagated to the rest of the kernel; more checks may be
needed in kernel primitives involved in these failures

20

Concluding remarks G CRITIWARE sel

Innovating Critical Systems Engineering

" Residual faults are hidden in our
software, and they will eventually
manifest themselves during
operation

A

" Software Fault Injection is a means to
assess and mitigate their impact
before releasing the product

" |t is a reasonably mature technology
that can be adopted in complex
software systems

21

Thank you for the attention!

Roberto Natella

roberto.natella@critiware.com

"CRITIWARE srl

Innovating Critical Systems Engineering

