
Software Fault Injection

for Software Certification

Roberto Natella

Critiware s.r.l.

9th Automotive SPIN Italy Workshop
Milan, December 1, 2011

Safety-critical software

Unfortunately, it is practically impossible to guarantee that

software is defect-free

 Complexity

 Time-to-market constraints

Many accidents due to “well-tested” software

2/2
7 2

The Toyota software failure

 Due to a software defect, Toyota recalled almost half a million

new cars

 The issue causes the unintended acceleration of the vehicle

 Numerous investigations have taken place (also by the NASA JPL

laboratory), but the causes of the problem are still unclear after

several months

3

Dealing with software faults

Residual

defects

in the

released

product
Analysis Design Coding Testing

Defect insertion

Defect removal

Rigorous development

practices and

processes to prevent

defects

Extensive V&V to

remove defects

(more and more

testing...)

Assume that

residual defects do

exist, and design the

system to cope with

them

4

Software Fault Tolerance

 Error detection and handling mechanisms cope with

residual defects by:

1. Masking software faults

 N-version programming, recovery blocks, ...

2. Detecting an incorrect state, in order to provide a fail-

stop behavior or a degraded mode of service

 Assertions, watchdog timers, time and space partitioning,

exception handling, ...

 They also require testing and debugging, and evidences

proving their effectiveness

5

Fault injection

Fault Injection is the process of deliberately introducing

faults into a system to assess its behavior in the presence

of faults

System
Inputs

Faults
Fault tolerance

Failures

6

Fault injection in the ISO/DIS

26262 safety standard

Source: ISO/DIS 26262-6, “Product Development: software level”, 2009 (draft version)
7

Traditional hardware fault

injection

CPU

Adaptation module

Fault

injection

elements

Hardware-implemented

fault injection

(e.g., pin-level injection)

Task 1

Task 1 Task N

Software-implemented

fault injection

(e.g., bit-flipping)

Fault injector

8

static void tg3_read_mem(struct tg3 *tp, u32 off, u32 *val) {

 unsigned long flags;

 if ((GET_ASIC_REV(tp->pci_chip_rev_id) == ASIC_REV_5906) &&

 (off >= NIC_SRAM_STATS_BLK) && (off < NIC_SRAM_TX_BUFFER_DESC)) {

 *val = 0;

 return;

 }

 spin_lock_irqsave(&tp->indirect_lock, flags);

 if (tp->tg3_flags & TG3_FLAG_SRAM_USE_CONFIG) {

 pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, off);

 pci_read_config_dword(tp->pdev, TG3PCI_MEM_WIN_DATA, val);

 /* Always leave this as zero. */

 pci_write_config_dword(tp->pdev, TG3PCI_MEM_WIN_BASE_ADDR, 0);

 } else {

 tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, off);

 *val = tr32(TG3PCI_MEM_WIN_DATA);

 /* Always leave this as zero. */

 tw32_f(TG3PCI_MEM_WIN_BASE_ADDR, 0);

 }

 spin_unlock_irqrestore(&tp->indirect_lock, flags);

}

Injection of software faults

 Software faults are more complex to emulate than hardware faults

 They are human mistakes occurring in the development process

9/2
7 9

Characterization of

software faults

A large set of bugs in

commercial and open-

source software was

used to characterize

software faults

Faults were classified as

missing, wrong, or

extraneous constructs

The majority of faults

(68%) belongs to a set of

few fault types
10

SoftwAre Fault Emulation

(SAFE)

 An industrial-strength C/C++ parser (tested on the Linux kernel, MySQL, Apache,

…) automatically analyzes the source code, to identify “injectable” code locations

 “Patch files” are automatically generated, each introducing an individual fault

if(a && b)

{

 c=1;

}

Target application

(source code)

Source

code

analysis

...

Mutated source code

(in the form of “patch” files)

Program

rewriting

if(a && b)

{

 c=1;

}

if(a && b)

{

 c=1;

}

if(a && b)

{

 c=2;

} Fault types library

11

Workflow

$./injection main.c

$ ls

injection main.ii_OMIA_0.patch main.ii_OMVAE_0.patch main.ii_OWPFV_1.patch test.h

main.c main.ii_OMIFS_0.patch main.ii_OMVIV_0.patch main.o test.ii

main.ii main.ii_OMLAC_0.patch main.ii_OMVIV_1.patch main.s test.o

main.ii_OMFC_0.patch main.ii_OMLAC_1.patch main.ii_OMVIV_2.patch test test.s

main.ii_OMFC_1.patch main.ii_OMLPA_0.patch main.ii_OWPFV_0.patch test.c

$ cat main.ii_OMVAE_0.patch

--- /home/pippo/Scrivania/test/main.c

+++ /home/pippo/Scrivania/test/main.c

@@ -12,1 +12,1 @@

- punt = &a;

+ punt = (punt);

$ patch -p0 < main.ii_OMVAE_0.patch

patching file /home/pippo/Scrivania/test/main.c

$ make

$./test

Segmentation fault (core dumped)

1. Several “patch” files are generated

2 A “patch” is applied to the software

3. Test execution

12

Automation of Fault Injection

Tests

 A huge number of tests

can be automatically

performed in few days

Size
(KLoC)

faults

Time/t
est

MySQL 232 39,53
9

~3 sec.

PostgreSQL 367 32,91
5

~10
sec.

Apache 26 11,62
1

~11
sec.

13

Applications in Software

Certification (1/2)

Verification&Validation of Software Fault

Tolerance mechanisms and algorithms

Testing and debugging

Evidence of their effectiveness

Software system
Other

software

Hardware

C1 C2

C4
C3

C5

Watchdog

C
h
e
c
k

C
h
e
c
k

C
h
e
c
k

14

Applications in Software

Certification (2/2)

Validation of failure mode analysis (e.g., FMECA, Fault
Trees)

 Software failure modes are not completely known and difficult to identify,
and they depend on the specific software component

 Need to provide evidence that all likely failure modes have been covered
(e.g., by emulating real defects in software components)

Software

stall

Incorrect

service X ?

...

...

15

Case study

FIN.X-RTOS is a real-time OS based on the Linux

kernel from Finmeccanica

Aim of this project is to provide an OS compliant with

the guidelines of the DO-178B safety standard

 Safety evidences will be used for certifying systems based on

FIN.X-RTOS

 Level D requirements already fulfilled, level C is being

considered

16

OS robustness against faulty

drivers

 Device drivers:
 are bug-prone components (3

to 7 times buggier than other
components)

 run in supervisor mode

 are tightly coupled through
APIs and shared data

 Software Fault Injection
adopted for evaluating if
faults can spread to the
kernel
 Propagation to other kernel

components

 Silent kernel data corruption

Safety-critical system

FIN.X-RTOS kernel

Driver

#1

Driver

#2

Driver

#N

…

Applications

17

Test campaign

a. For each injectable fault:

1. Generation of a “faulty driver” by
injecting the fault in the original driver

2. Installation and loading of the driver in
the kernel

3. Execution of an user application

4. Data collection (error messages from
kernel/apps; register and memory
dumps)

b. Analysis of kernel failure modes

 Fault injection in 3 network device
drivers (ne2k-pci, rtl8139cp, pcnet32)

 150 injected faults per device driver

Host machine

Test VM

SAFE

tool Apps

RTOS

serial port

18

Test results (1/2)

 Classification of failure modes:

 Kernel oops

 Hang (stall)

 Application errors

 More than half of the failures
impact on the kernel state
(kernel oops and hangs)

	

N
u
m

b
e
r

o
f

e
x
p
e
ri
m

e
n
ts

Kernel oops Hang Correct

elaboration
Appl.errors

19

Test results (2/2)

Analysis of kernel error messages and register/memory

dumps:

46/51 error messages denote a failure within the

device driver

 These failures can be tolerated by unloading the driver, releasing

its resources (locks, memory), and reloading the driver

5/51 error messages denote a failure in other kernel

components

 Errors propagated to the rest of the kernel; more checks may be

needed in kernel primitives involved in these failures

20

Concluding remarks

 Residual faults are hidden in our

software, and they will eventually

manifest themselves during

operation

 Software Fault Injection is a means to

assess and mitigate their impact

before releasing the product

 It is a reasonably mature technology

that can be adopted in complex

software systems

21

Thank you for the attention!

Roberto Natella

roberto.natella@critiware.com

