

5° Workshop AutomotiveSPIN Italia Milano, 4 Giugno 2009

Top Metrics for SPICE-compliant projects

Luigi Buglione
Engineering.it
luigi.buglione@eng.it

Goals:

- ✓ G1. To analyze the AutomotiveSPICE process scopes for measurement purposes
- ✓ G2. To discuss the measures that can be adopted in an Automotive project
- ✓ G3. To propose a possible 'top metrics' scope and boundary for SPICE-compliant projects

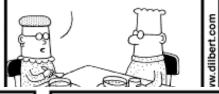
- ✓ Why measure?
- ✓ ISO/IEC 15504: current status
- AutomotiveSPICE History & possible process scopes for appraisals

The Measurement issue

- Some basic questions
- ✓ What to measure: STAR Taxonomy
- ✓ GQM: Goal-Question-Metric
- Requirements, Contraints and Solutions

Possible solution

- ✓ Balancing Criteria and Numbers of Measures
- ✓ BMP(Balancing Multiple Perspectives)
 - measurement procedure
 - An application in the Automotive context


Conclusions & Prospects

ENGINEERING

Why measure?

WHY HAVE YOU ONLY FINISHED ONE PROJECT AT WORK THIS YEAR? NORMA'S SON DID THREE.

YOU CAN'T MEASURE SOMEONE'S WORTH BY COUNTING THE NUMBER OF PROJECTS HE DOES.

MAYBE WE SHOULD TRACK ROI INSTEAD.

ALICE, CAN YOU SHOW THE NEW GUY HOW TO DO A PROJECT STATUS REPORT?

HE DOESN'T READ THEM, SO WE ALL USE A RANDOM PHRASE GENERATOR. I'LL E-MAIL IT TO YOU.

YOU SAID THAT IN FRONT OF HIM.

© Scott Adams, Inc./Dist. by UFS, Inc.

I'M AN ASSERTIVE AND INNOVATIVE PROFES— SIONAL, EXPERIENCED IN PROJECT AND OPER— ATIONS MANAGEMENT METHODOLOGY AND PROCESS DEVELOPMENT.

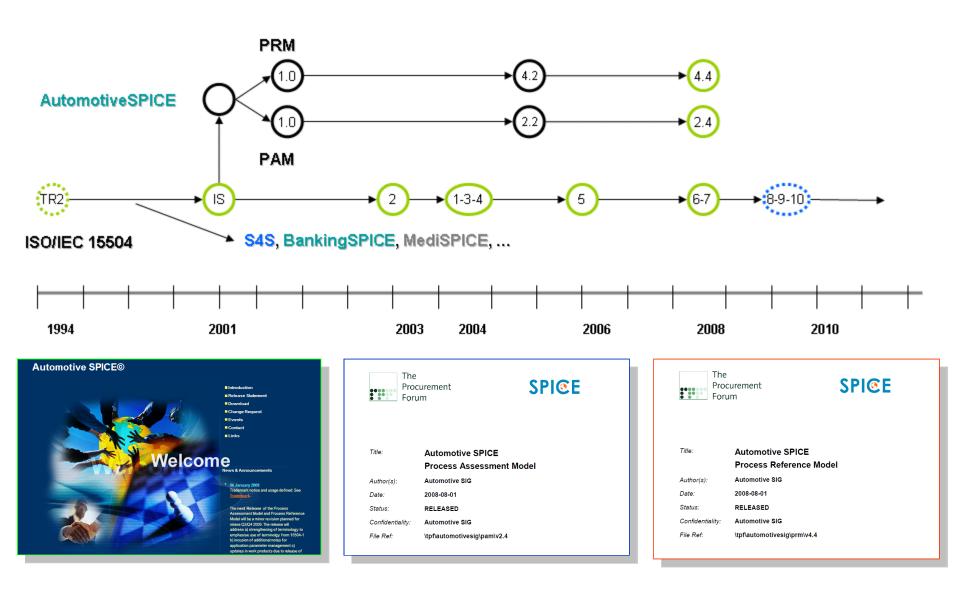
HE I JUST SAT THROUGH A THREE-HOUR PROJECT REVIEW MEETING.

© Scott Adams, Inc./Dist. by UFS, Inc.

Source: Scott Adams's Dilbert website: www.dilbert.com

URL: YouTube website: http://www.youtube.com/watch?gl=IT&v=Um-XIKerWvA

Introduction ISO/IEC 15504: current status


ISO/IEC 15504 WG10: Information Technology - Process Assessment

Part #	Title	Type	Year	ICS
15504 -1	Concepts and Vocabulary		2004	90.60
15504- <mark>2</mark>	Performing an Assessment		2003	90.60
15504 -3	Guidance on Performing an Assessment		2004	90.60
15504-4	Guidance on Use for Process Improvement and Process Capability Determination		2004	60.60
15504-5	- 		2006	60.60
15504-6			2008	60.60
15504-7	04-7 Assessment of Organizational Maturity		2008	60.60
15504- <mark>8</mark>	An Exemplar Assessment Model for Service Management Process			10.99
15504-9	9 Target Process Profiles			30.20
15504- <mark>10</mark>	O Safety Extensions TR2		NWIP	

ENGINEERING

AutomotiveSPICE – History

AutomotiveSPICE – possible process scopes

Management Process Group (MAN) MAN.1 Organizational alignment MAN.2 Organization management A MAN.3 Project management MAN.4 Quality management A MAN.5 Risk management A MAN.6 Measurement	Engineering Process Group (ENG) A ENG.1 Requirements elicitation A ENG.2 System requirements analysis A ENG.3 System architectural design A ENG.4 Software requirements analysis A ENG.5 Software design A ENG.5 Software design A ENG.7 Software integration A ENG.8 Software integration A ENG.9 System integration A ENG.9 System integration A ENG.10 System testing ENG.11 Software installation ENG.12 Software and system maintenance	Supporting Process Group (SUP) A SUP.1 Quality assurance A SUP.2 Verification SUP.3 Validation A SUP.4 Joint review SUP.5 Audit SUP.6 Product evaluation A SUP.7 Documentation A SUP.8 Configuration management A SUP.9 Problem resolution management A SUP.10 Change request management
The Acquisition Process Group (ACQ) ACQ.1 Acquisition preparation ACQ.2 Supplier selection A ACQ.3 Contract agreement A ACQ.4 Supplier monitoring ACQ.5 Customer acceptance A ACQ.11 Technical requirements A ACQ.12 Legal and administrative requirement A ACQ.13 Project requirements A ACQ.14 Request for proposals A ACQ.15 Supplier qualification	Resource & Infrastructure Process Group (RIN RIN.1 Human resource management RIN.2 Training RIN.3 Knowledge management RIN.4 Infrastructure	Operation Process Group (OPE) OPE.1 Operational use OPE.2 Customer support
Supply Process Group (SPL) A SPL.1 Supplier tendering A SPL.2 Product release SPL.3 Product acceptance support A Automotive-SPICE	Process Improvement Process Group PIM.1 Process establishment PIM.2 Process assessment A PIM.3 Process improvement HIS (VW, Audi, BMW, Porsche, D&C)	Reuse Process Group (REU) REU.1 Asset management A REU.2 Reuse program management REU.3 Domain engineering

not included in ISO/EC 15504

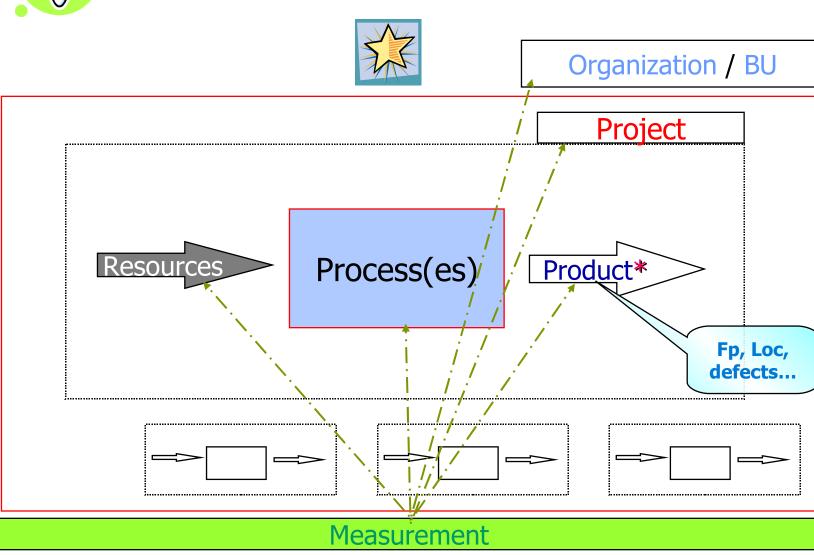
FIAT

FORD

Introduction Some basic questions...

Q: why MAN.6 (Measurement) is not included in any profile?

Q: could it be reasonable to consider MAN.6 covered by MAN.3 (Project Management)?


Q: which kind of measures are selected for monitoring the project and from which entities?

Q: are those measures chosen just for testing the *product* or for managing the *project* producing the product?

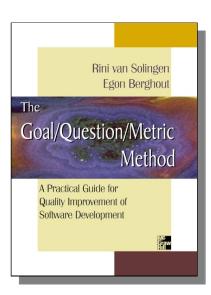
Introduction STAR Taxonomy

12th International Workshop on Software Measurement, Magdeburg,

GQM: Goal-Question-Metric

A common-sense paradigm for choosing measures

Three main steps driven by the need of satisfy informative goals:

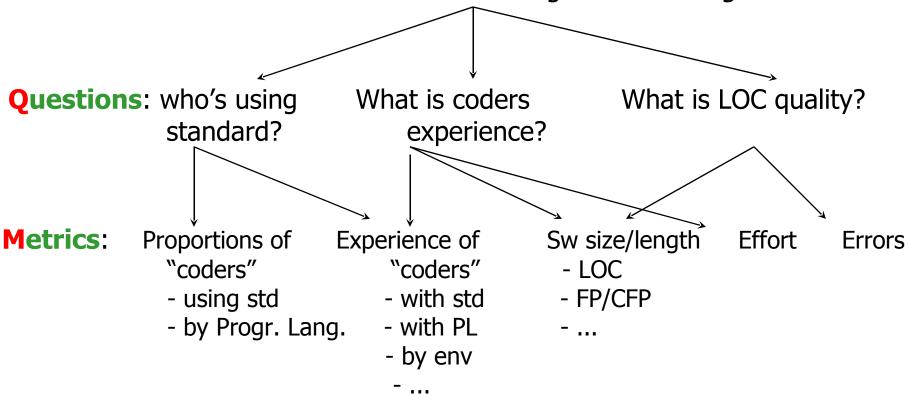

- establish the general goals for the project/product
- generate questions whose answers can determine if such goals have been achieved (or not)
- generate a series of metrics that can help in (quantitatively) determining if goals have been achieved (or not)

Examples of goals by stakeholders:

- High-level management
 o Improve product quality
 o Improve staff productivity
- Software managero estimate effort and costso evaluate new tools and methods
 - Increase reuse
- **Software engineers**

 - identify defective modules Improve reliability & maintenability
- **Users**

 - improve usability Increase amount of training hours



GQM: Goal-Question-Metric An Example

Goal: evaluate the effectiveness of writing sw code using standards

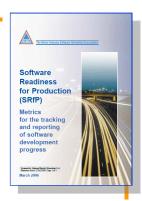
GQM: Goal-Question-Metric

A three-tier level example

Some assumptions/notes:

- each entity can be measured by 1+ attributes
- each measure has a cost for being thought, gathered, checked and used (PDCA)
- the informative value of two joint measures is more than from single measures
- the conflicting informative value among measures should be avoided
- focus on the initial informative goal

Entity	Attribute	Measure
Person	Age	# yrs from last birthday
Person	Age	# months from birth
User Requirements	Functional Size	fsu (e.g. FP, CFP)
Source Code	Length	# LOC (generic)
Source Code	Length	# Exec. Statements
Source Code	Quality	# found faults / KLOC
Testing Process	Duration	# hrs start-to-end
Testing Process	Fault Frequency	# found faults / KLOC
Tester	Efficiency	# found faults / KLOC
Operating System	Reliability	MTTF rate


The Measuring Issue Requirements & Constraints → Solutions

Requirements / Constraints:

- Scope: consider the chosen A-SPICE PRM-scope (e.g: HIS, Fiat, Ford, ...)
- (Process) capability target: CL2
- Cost/benefit: the higher ROI as possible, minimizing the cost of quality
- # of measures: few measures, possibly to be automated for data gathering

Possible Solutions:

- Scope: HIS process scope
- Balancing criteria:
 - ✓ BMP technique by entities and attributes of interest (with causal links).
- Sources for measures:
 - ✓ Project-level: PMBOK, MISRA SRfP...
 - ✓ by stakeholder's viewpoint/perspective (Time, Cost, Quality, Risk, Ethic, ...)
 - ✓ Process-level: ISO/IEC 15504, AutomotiveSPICE, ISO/TS 16949, ...
 - ✓ by process group (ENG, SUP, MAN, CUS, ACQ, ...)
 - ✓ Product-level: ISO 9126-x (25000x), ISO 26262 (Functional Satefy), ISO 25012 (Data Quality), PSM v4.0b, etc...
 - ✓ by attribute (functionality, defectability, maintainability, functional safety, etc...)

Balancing Criteria and Number of Measures

- •Q: What is the right number of measures to use?
 - -The Miller's "magic number" 7 ± 2 ?

- General suggestions to avoid the misbalance in selecting the measures critical to success, whatever the number:
 - Select a small suite of key measures that will help you to understand your group's work better, and begin collecting them right away, measuring several complementary aspects of your work, such as quality, complexity, and schedule" (Karl Wiegers)

Balancing Criteria and Number of Measures

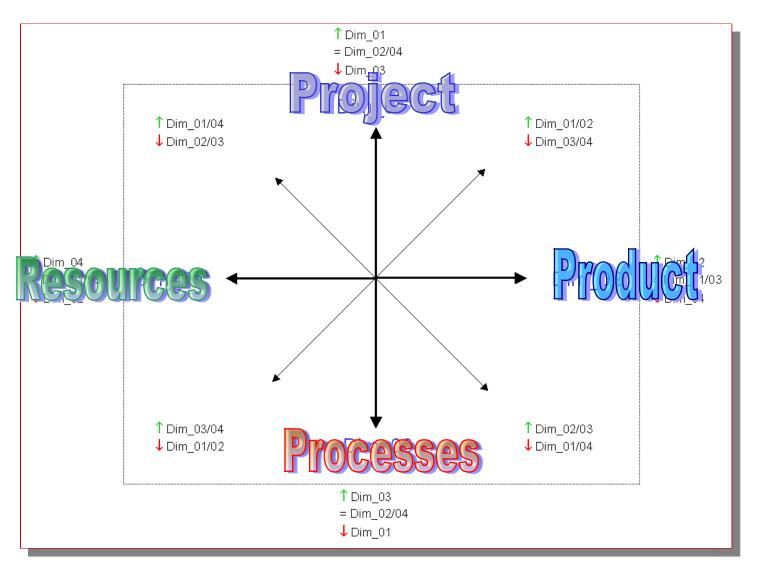
Q: how can a proper balance of perspectives and indicators be selected when managing a portfolio of projects?

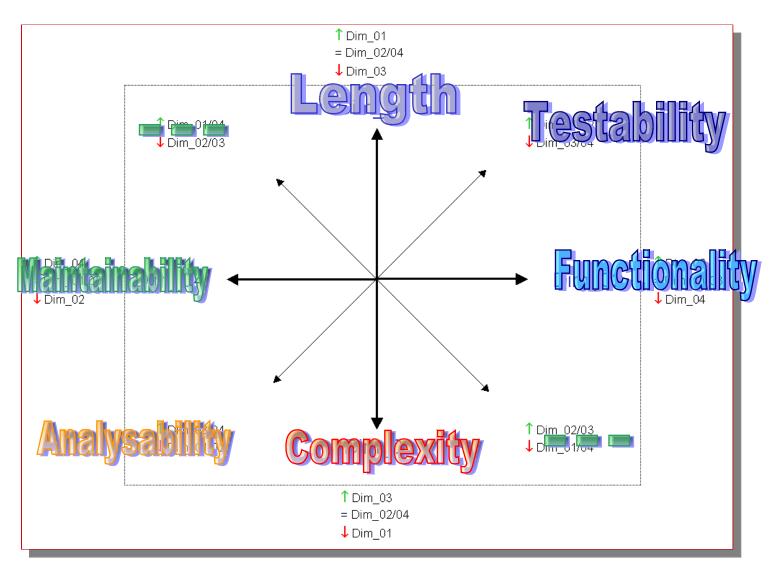
PEANUTS © United Feature Syndicate, Inc.

The problem is **not** to reduce the cost of measurement,

but optimising it against the informative value provided by the number of measures/indicators balancing them by each perspective of analysis

BMP The Proposed Measurement procedure


- Determine the <u>dimensions of interest in the project</u>
- Determine the list of the most representative <u>measures</u> <u>associated with each dimension</u>
- For each of the measures selected, identify which other control variables might be impacted negatively
- Figure out the <u>best combination of indicators and the causal relations between them</u> in order to <u>build a measurement plan</u> for the project


Determine the dimensions of interest (a) – Multiple pov

Determine the dimensions of interest (b) – Product-level

2 Determine the list of most representative measures (1)

Entity	Attribute	Measure	Threshold	A-SPICE
Project	Planning compliance	Effort (man/hrs) per SLC phase, per iteration (abs, %)	(profiles on hist.data)	MAN.3
Resource	Time	% of open complaints / notes for delaying in providing the agreed furnitures (tracked) per contract		ACQ.4
Process*	Time performance	SPI (Schedule Performance Index)	ongoing	MAN.3
Process*	Cost performance	CPI (Cost Performance Index)	ongoing	MAN.3
Process	QA performance	% of non-conformances still open	≤15%	SUP.1
Process*	Maturity	Problem Reports (PR) by status (open, closed)	(profiles on hist.data)	SUP.9
Process	Changeability	Avg Change Requests (CR) working time by status	(profiles on hist.data)	SUP.8 - SUP.10
Process*	•	Requirements Volatility of 'Scope Creep' Index (# of modified/new UR not formally traced / tot. # UR) by iteration		ENG.4
Product*	Code Length	Kilo Lines of Code (KLOC) [system, function, module] c.a 5 functions per module	(abs, 100-150, 700-1000)	ENG.4
Product*	Functional Size	Functional Size (fsu) [system]	(abs)	ENG.4

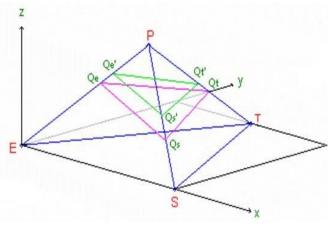
2 Determine the list of most representative measures (2)

Entity	Attribute	Measure	Threshold	A-SPICE
Product*	Maintainability	Cyclomatic Complexity (of a function)	≤20	ENG.5, ENG.6
Product*	Maintainability	# of transfer parameters in a function	≤5	ENG.6
Product*	Maintainability	Avg size of a function statement (operands+operators / # of executable statements)	≤10	ENG.6
Product*	Code Stability	# of exit points from a function	1	ENG.5, ENG.6
Product*	Code Stability	# of calling functions of a function (fan-out)	≤10	ENG.5, ENG.6
Product	Code Stability	# of execution paths in a function	≤1000	ENG.5, ENG.6
Product	Testability	Branch Coverage	100%	ENG.8
Product*	Testability	Max # nesting depth of the function control structure	≤4	ENG.8

3 Verify counter-impacts among measures

Some notes/doubts to solve (each time):

- Taking into account all measurable entities (18 measures)...
 - ✓ <u>Project</u>: 1 (4%); <u>Resource</u>: 1 (6%); <u>Process</u>: 6 (34%); <u>Product</u>: 10 (56%)
- ...or focusing on a mix of process-product measures (12 measures)?
 - ✓ <u>Process</u>: 4 (33%); <u>Product</u>: 8 (67%)
- Possible causal links among measures (for the analysis phase)
 - ✓ RIN.1 (quality of H-resources) w/ ENG.8-10 (sw-sys testability)
 - ✓ ENG.4 (req. Volatility) w/ MAN.3 (project mgmt)
 - **√**
- Need to balancing and look for data gathering costs and counterimpacts
 - ✓ Product-level measures: easier to keep by tools than for process-level based ones
 - ✓ Q: how much does it cost to measure the other measures?
 - ✓ Q: are we within the budget set for Monitoring & Control process (within MAN.3)?
 - ✓ Q: keep all measures or cancel some measures? Eventually which one(s)? Why?
- Possible missing processes to be included for measurements
 - ✓ MAN.5 (Risk Management), REU.2 (Reuse Prg. Mgmt)



Determine the possible best combination of measures

Conclusions & Prospects

Monitoring & Control...

- ...is a critical activity and should be properly planned
- ...must be a proactive process, in order to invest the right amount of budget
- ...cannot be underestimated and must be run as a process, not only as an activity!

What to measure in a SPICE-compliant project?

- ✓ Different entities can be measured (org, project, resource, process, product)
- ✓ Each entity can be measured according several attributes (length, size, defectability, etc..)
- ✓ SPICE
 - COSMIC is a new FSMM allowing to measure also 'technical' layers, and has simplified counting rules

Some techniques/buzzwords

✓ SPICE, ISO/IEC 15504, AutomotiveSPICE, GQM, BSC, ISO 9126-x, ISO 26262-x, LOC, Function Point, LOC, MTTF, ...

Some Lessons Learned

- Measure a few, but measure the right things
- ✓ A balanced set of measures can allow a proper monitoring of your projects
- ✓ Make measures consistent with the SPICE PRM-scope and boundary

Some observations

- ✓ HIS process scope:
 - currently contains 16 processes (1 MAN, 9 ENG, 4 SUP, 1 ACQ)...
 - ...but does not take into account MAN.5, MAN.6 and any RIN processes (no processes on inputs and few controls in the scope)

Next Steps

...to start to apply (or reinforce, if yet applied) those concepts in your organization!

Thanks for your attention!

Misurare il Software

FrancoAngeli (2008, 3° Ed.)

Luigi Buglione

Misurare il software

Quantità, qualità, standard e miglioramento di processo nell'Information & Communication Technology

Franco Angeli

Misurare il software

Quantità, qualità, standard e miglioramento di processo nell'Information & CommunicationTechnology

Franco Angeli, 2008 – 3ª edizione Collana: *Informatica ed Organizzazioni* pp. 380 -Volume 724.20 ISBN 978-88-464-9271-5

Luigi Buglione

www.geocities.com/lbu_measure/libri/mis.htm

Parte dei proventi sono devoluti alla

FISM (Fondazione Italiana Sclerosi Multipla)

LuigiBuglione t +39 06 83074472 m +39 335 1214813 luigi.buglione@eng.it Engineering.it S.p.A. Via Riccardo Morandi, 32 I-00148 Rome (Italy) www.eng-it.it